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1. Exoplanet Opportunities and Context

The study of extrasolar planets has exploded in the first decade of the 21st Century. There are 
now over 330 known exoplanets, nearly all with masses constrained by radial velocity (RV) 
measurements. Many of these exoplanets have projected masses (m sin i) about that of Jupiter, 
but over a dozen have projected masses less than Neptune (below 20 Earth masses). Recent 
improvements in RV precision have revealed an increasing number of very low mass planets, 
including potential Super-Earths, and many more will likely be discovered in the near future. The 
Kepler mission will soon be launched, and it should determine the frequency of planets as small 
as the Earth in habitable zones of stars in our region of the Galaxy.

Exoplanet characterization is also advancing at least as quickly as exoplanet discovery. Over 50 
planets have been found to transit the disks of their host stars. When combined with RV 
measurements, photometric transit observations have revealed exoplanet masses, radii, densities, 
and orbital periods. This information alone has constrained the structures of these planets, 
finding that several have “inflated” radii that are larger than expected from model predictions. 
HST transmission spectroscopy (Charbonneau et al. 2002, Barman 2007, Swain et al. 2008b) and 
Spitzer secondary eclipse observations (e.g., Knutson et al. 2007) are revealing the temperatures, 
atmospheric temperature profiles, surface winds, and compositions of several exoplanets. Indeed, 
we are entering a new era of exoplanetary science. 

This rapid progress is very exciting, and much more should be learned about exoplanets over the 
next  decade. Precision RV observations with HARPS, HARPS-N, and new facilities (e.g., APF, 
N-EDI / T-EDI)  will likely result in discovery of many more Super-Earth mass planets around 
nearby stars. More sensitive transit surveys are underway, in development, or under study, and 
some may reveal whether there are small-to-large planets in the habitable zones of nearby M 
stars. The James Webb Space Telescope (JWST) should be able to obtain very high quality 
spectra of transiting Jupiter-size planets over near- to mid-infrared (IR) wavelengths and should 
be able to detect earth-sized planets transiting M dwarf stars. The MMT and Keck nulling 
interferometers will also be able to detect the mid-IR thermal emissions of circumstellar dust 
disks with masses down to 10 – 100 times that of our own (10 – 100 zodis, respectively). 

We are now on the verge of detecting and characterizing Earth-analog and Super-Earth rocky 
planets in the habitable zones around nearby stars, an age-old quest of astrophysics and mankind. 
We could begin a modest aperture space mission in the next decade that would address the next 
set of fundamental exoplanetary science questions with direct imaging observations. What are 
the temperatures and compositions of the closest Neptune-to-Jovian mass planets discovered by 
radial velocities that are not excessively irradiated by their host stars?  Which of the closest stars 
in our immediate solar neighborhood have Earth-like or Super-Earth planets in habitable zones? 
Are the low resolution spectra of these small planets similar to the terrestrial planets in our own 
solar system, or are they more bizarre water or ice worlds? How much exozodiacal dust is there 
around nearby stars, and how symmetrically is it distributed? What is the composition of 
exozodiacal dust, and what can we learn about unseen planets from its distribution?

Observations that address these issues will also shed much light on the formation and evolution 
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of stars and planetary systems including our own Solar System. The simultaneous observation of 
planets and dust disks should reveal much about planetary architectures, planetary compositions, 
and the creation and dispersal of debris disks. It is likely that suitable observations of the 
planetary systems around the nearest stars will drive the development of planetary systems 
theory (as has been the case for the past decade), and this will drive our understanding of these 
systems, their evolution, and their host stars.  

2. Key Advances Required
The key advance needed to discover and characterize the planetary systems of nearby stars  is 
new high spatial resolution, high contrast imaging data over the 400 – 800 nm visible band with 
modest spectral resolution, R ~ 15-20. These data can be obtained most efficiently by developing 
a modest aperture (~ 1.5-m) high performance space coronagraph mission.  High contrast 
coronagraphic imaging observations (rejecting all but 1E-10 of the host star)  with inner working 
angles (IWAs) of ~150 mas will be capable of probing down to the habitable zones of nearby 
FGK stars. Guyon et al. (2008) describe how utilizing a high efficiency Phase-Induced 
Amplitude Apodization (PIAA) coronagraph (e.g., Guyon 2003) in a moderate aperture (1.4-m) 
space telescope with several wavefront controlled channels can provide the needed imaging data. 
The high efficiency, high contrast, and small IWA of the PIAA coronagraph are essential for 
making adequate observations with such a small (and inexpensive) space telescope.

A moderate-sized space telescope with a high performance coronagraph would provide a 
capability threshold that is adequate for addressing numerous important questions about the 
planetary systems of nearby stars. Herein we consider the capabilities of a 1.4-m aperture 
mission. Such an observatory would have adequate sensitivity to detect Earth- and Super-Earth 
size (1 and 2 Earth radii) and Earth albedo planets around 7 – 20 (Earth – Super-Earth) nearby 
stars  in the presence of 1 zodi disks in under 12 hours of integration time in a 100 nm wide V 
band filter. Even moderate signal-to-noise, low spectral resolution (R ~ 5 filters) photometric 
imaging data would be capable of distinguishing between the rocky, ice giant, and gas giant 
planets in our solar system (Fig. 1). Slightly higher spectral resolution (R~15) data would 
differentiate them much better (Fig. 2).
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Figure 2: Planet albedos through  R=15 spectral bands. Earth’s 
atmosphere has a relatively constant albedo across the visible, 
with a slight absorption near 600 nm due to ozone. EGPs like 
Jupiter  will have relatively flat spectra, with deep methane 
absorption in the red adjacent to bright continua arising from 
clouds. Cooler, lower gravity, and/or methane-rich ice giants like 
Uranus & Neptune are bluer and much darker in the red.

Figure1: Colors of Solar System planets  
(courtesy of W. Traub)



The spectral energy distributions of Super-Earth sized planets around the nearest ~10 stars could 
be characterized to moderate signal-to-noise (SNR ~ 20) in about a week each.  Dust disks on the 
order of 1 zodi could be detected in hours, and their spatial extents and low resolution spectra 
could be measured in a few days. Jupiter analogs could be detected in under an hour for dozens 
of stars, and they could be characterized to SNR ~ 30 in under a week each. Numerous known 
RV planets could be detected and characterized; a simulated coronagraphic image of the planet 
47 Uma b embedded in a 3 zodi disk is shown in Figure 3.

Figure 3: Simulation of 24 hr coronagraphic data showing 
the Jovian planet 47 Uma b (see Table 1) with 3 zodis of 
exododi dust in a disk with surface density r-0.34 inclined 59 
degrees. This is a simulation of λ= 550 nm light in a 100 
nm bandpass with predicted PIAA performance of  a 1.4-m 
aperture  observatory with a PIAA coronagraph. 47 Uma  is 
a G0V star at 14 pc distance. Photon noise and detector 
noise for an electron multiplying CCD have been added.

A moderate aperture coronagraph is likely the best 
way to address the scientific issues outlined in this 
white paper. It is true that JWST will be able to obtain 
high quality spectra of transiting gas giant planets 
(Greene et al. 2007), but it will be difficult for JWST 

to detect low mass dust disks (below hundreds of zodis) near habitable zones or study small 
planets. Transit observations are limited by the photon noise of the host star, and that is too great 
even for JWST to make much headway in studying small planets (Beckwith 2008). The recent 
Exoplanetary Task Force report is also being modified to reflect this fact. The signal to noise of 
photon noise limited observations increases as the square root of collecting area, so JWST should 
have intrinsic SNR of about 7 times greater than Spitzer. This should allow good quality spectra 
of gas giant planets that orbit their host stars closely, but it is not sufficient to characterize small 
planets or ones (e.g., solar system analogs) that do not transit their host stars.

3. Scientific Discovery Potential and Compelling Questions
The general area of the discovery and characterization of the planetary systems of nearby stars 
includes studying terrestrial planets in their habitable zones to giant planets and circumstellar 
debris disks. We now present 3 compelling questions in this field and examine how relatively 
modest coronagraphic imaging data (realistic for a mission started this next decade) might 
address them.

3.1. What are the numbers and properties of giant planets in a sample of nearby stars?

The reflection spectra of mature giant planets are controlled by Rayleigh and Mie scattering from 
atmospheric gases, aerosols, and cloud particles, and by gaseous absorbers. Scattering of incident 
light usually dominates in the blue, giving way to absorption by the major molecular components 
at wavelengths greater than about 0.6 µm. The major absorbers in the optical are methane and, 
for warmer planets, water. Generally speaking, in strong molecular bands photons are absorbed 
before they can scatter back to space. In the continua between bands, photons scatter before they 
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are absorbed. The continuum flux from a given object is thus controlled by Mie scattering from 
its clouds and hazes and Rayleigh scattering from the column of clear gas above the clouds. 
Figure 4 illustrates the significant impact that clouds can have on exoplanet spectra. 

Thus visible-wavelength spectra of 
giant planets opens a door into their 
cloud structure (and by extension 
atmospheric temperature) and 
composition. For cold giants, like 
Jupiter and Saturn, the abundance of 
C will be constrained through the 
well-studied methane absorption 
features that dominate their optical 
spectra (Figure 4).  In somewhat 
warmer atmospheres (younger or 
more massive planets or giants closer 
to their primaries or hotter primaries) 
ammonia will not condense but 
instead be present as a gas in the 
atmosphere.  Such planets will sport 
water clouds and have a flat, bright 
continuum spectra punctuated by 
methane and ammonia absorption. 
Even warmer planets, without 
clouds, will show water vapor bands 
in the optical and be very dark in the 
red.  Meanwhile “ice giants” (highly 
enriched atmospheres like Uranus 
and Neptune) will have their own 
unique spectral sequence 

characterized by very blue colors because of the overwhelming methane absorption in the red 
and should be easily distinguishable from their less enriched, more massive siblings (Figures 1 
and 2).  One challenge, however, is that composition information is found in the depth of 
absorption features, which are of course at less favorable contrast and lower S/N than the 
continuum.  Thus composition determinations should focus on weak to moderate strength bands 
(e.g., at 0.62 µm or 0.54 µm) rather than the strongest bands (e.g., the 0.89 µm methane band) 
which will be quite dark. 

Color will provide the zeroth order characterization of imaged exoplanets. A set of moderate and 
wide band filters spanning the 400 – 800 nm wavelength region should also be used to measure 
the strong absorptions of NH3, CH4, and H2O  to constrain giant planet temperatures and 
compositions. 

Low resolution spectra alone are not sufficient to characterize EGPs; we must also know the 
mass of a planet to determine its temperature and composition with high precision. A moderate 
aperture space PIAA coronagraph will be able to observe over a dozen known radial velocity 
planets with known m sin i masses (Table 1). These planets span the 0.5 – 1 Mjup projected mass 
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Marley et al (1999)



range at distances 1.7 – 6 AU from their host stars.  Two well-separated observations of each will 
constrain their inclinations and thus their masses. These systems should form a good set of 
planets that can be used to interpret  observations of other EGPs with less well known masses. 

Table1: Known RV exoplanets easily observable with a moderate aperture coronagraph

We have computed that Jupiter analogs (same albedo, 5 AU orbits) could be detected with 20% 
probability (random positions in their orbits) around over 200 nearby stars in under 6 hours of 
integration time each (100 with integration times under an hour). Thus a survey of 200 stars 
would yield on the order of 40 giant planets (for eta_planet = 1) and could be completed in under 
a year, including time for spectral characterization of detected planets. 

3.2 What is the frequency, masses, distribution, and composition of circumstellar dust disks 
around nearby stars?

Disks of circumstellar material are both the progenitors and outcomes, of the processes of 
planet formation and planetary system evolution. Hundreds of sun-like stars have been found to 
exhibit excess IR emission attributable to dusty circumstellar debris. The vast majority of these 
systems, however, remain spatially unresolved (Meyer et al. 2008). Dust temperatures and 
covering fractions may be estimated from long wavelength spectral energy distributions (SEDs), 
but the inferred locations of the thermally emissive orbiting dust grains depend upon the 
properties assumed for the particles. Reasonable ranges of particle sizes and compositions result 
in models for the dust-producing planetesimals that vary by an order of magnitude in orbital 
radius and total dust mass (e.g., Fig. 5 in Hines et al. 2006). High-resolution scattered-light 
images of debris disks will reveal the morphology of the disks and trace the location of the dust-
producing planetesimals, but such images today are rare due to the lack of suitable high-contrast, 
high resolution, small IWA imaging systems.

Currently deployed "high contrast" imaging technologies can detect only the largest, most 
massive and brightest circumstellar disks, and cannot effectively probe their innermost regions. 
The few resolved images obtained to date have provided crucial  insights  into the formation, 
evolution,  and architectures of exoplanetary systems; but they are just the tip of the iceberg 
waiting to be fully revealed. The existing sparse sample of debris disks imaged with scattered 
starlight  represents  only  the  youngest  (10–100 Myr),  or  extremely  anomalous,  disk  systems 
around older stars. Observations with a new moderate aperture space coronagraph are required to 
address key questions :
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4 7  U m a  b 2 .6 1 0 8 3 2 .11 0 .1 5 1 .8 6 1 4 .0 G0 V 1 .0 5 .1 2 6 .1 4 .1 E-0 9



• What is the amount and distribution of circumstellar dust around the stars in the solar 
neighborhood? How is dust distributed in their habitable zones and how does this impact 
direct planet detection (also relevant for future larger missions)?

• Are there dynamical structures visible in the circumstellar disks of nearby stars, and  
what can we learn about unseen planets from zones of different material or disk gaps?

• What are the physical properties of the exozodiacal debris material; what are the grain 
properties and distributions?

Starlight-suppression  with  a  1.4-m  aperture  PIAA coronagraph  will  achieve  disk-imaging 
contrasts of ~10-10 exterior to a 130 mas IWA (at 0.4 microns), an increase of ~ 5 to 6 orders of 
magnitude  in  contrast  beyond  what  HST and  ground-based  6–10  m telescopes  with  current 
adaptive optics systems can provide. JWST will have contrast-limited performance no better than 
HST.  This  IWA and  spatial  resolution  is  similar  to  what  the  Large  Binocular  Telescope 
Interferometer (LBT-I) will provide at 11 microns, enabling a comparison of circumstellar dust in 
scattered  light  and  thermal  IR  emission  at  unprecedented  spatial  resolution.  This  moderate 
aperture space coronagraph will  also be at  least  10 times  as  sensitive to  interstellar  dust  in 
habitable zones as LBT-I.  This high sensitivity to light-scattering circumstellar  debris at  this 
small IWA will provide strong constraints on systemic dust mass-loss rates, and observationally 
test models of dust production throughout the epochs of planet formation, and their subsequent 
dynamical evolution.

Such an observatory will be capable of providing the first direct images in scattered light of 
debris disks (the analogs of our solar system's zodiacal dust cloud, asteroid and Kuiper belts) 
around a large sample of nearby FGK stars (~200, same as for the gas giant survey). The disk 
sizes will likely vary from unresolved (interior to the  IWA) to much more than 10 arc-seconds 
from some stars (e.g., the very large disk circumscribing Fomalhaut). 

3.3 What planets are in the habitable zones of the closest stars, down to the size of Earths?

A 1.4-m PIAA coronagraph will be capable of detecting even small planets (1 – 2 R) with Earth 
albedos in the habitable zones of about two dozen of  the nearest stars. This is a large enough 
sample to probe several significant questions:

• Which of the closest stars have Earth-like planets in or near their habitable zones?

• What are the broad-band colors of small planets; are they similar to ones in our own 
solar system?

• Are any very strong spectral features are seen in the atmospheres of these planets; do 
any show H2O, O2, or any other molecules needed for life as we know it?

The atmospheres of such warm terrestrial exoplanets may show spectral features produced by 
water vapor.  These can be seen in the albedo spectrum of Earthshine (Woolf et al. 2002).  The 
principal bands in the visible / near-IR spectrum are H2O at 825 +/- 20nm and 720 +/- 20nm. 
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Spectral features produced by molecules containing oxygen are also discernable at low spectral 
resolution. The most prominent at low spectral resolution is the Chappuis band of ozone at 590 
+/- 50nm.  Next most prominent is the very deep oxygen A band at 760 +/- 10nm. Detecting O3, 
H2O, and O2 in the atmospheres of terrestrial planets will be possible for those orbiting the 
nearest stars. The H2O and O3 features are broad and shallow (~10% deep), requiring SNR ~ 30 
on the continuum  for detection.  

Our simulations show that any small planets in or near habitable zones of 20 of the nearest stars 
would have a 20% chance of detection in 6 – 12 hours of integration time with a moderate 
aperture space coronagraph. Thus there would be a 90% chance of detecting each one in a total 
of 10 uncorrelated visits. Therefore a complete survey and repeat followup characterization 
could be completed in about a year of real time. These observations will likely include short term 
monitoring for variation with rotation and longer term monitoring for seasonal effects (perhaps 
snow), phase effects in atmospheric scattering, and constraining orbits. 

Summary
Significant advances in the discovery and characterization of the planetary systems of nearby 
stars can be accomplished with a moderate aperture high performance coronagraphic space 
mission that could be started in the next decade. Its observations would make significant 
progress in studying terrestrial planets in their habitable zones to giant planets and circumstellar 
debris disks, also informing the design of a more capable future mission. It is quite exciting that 
such fundamental exoplanet science can be done with relatively modest capabilities.

References
Barman, T.  2007, “Identification of Absorption Features in an Extrasolar Planet Atmosphere,” 

ApJ, 661, L191
Beckwith, S. V. W. 2008, “Detecting Life-bearing Extrasolar Planets with Space Telescopes,” 

ApJ, 684, 1404
Charbonneau, D., Brown, T., Noyes, R., & Gilliland, R. 2002, “Detection of an Extrasolar Planet 

Atmosphere,” ApJ, 568, 377
Greene, T. and 8 coauthors 2007, “Observing exoplanets with the JWST NIRCam grisms,” Proc. 

SPIE 6693, 66930G
Guyon,  O.  2003,  “Phase-induced  amplitude  apodization  of  telescope  pupils  for  extrasolar 

terrestrial planet imaging,” A&A, 404, 379
Guyon,  O,   and  23  coauthors  2008,  “Pupil  mapping  Exoplanet  Coronagraphic  Observer 

(PECO),” Proc. SPIE 7010, 70101Y-1
Hines, D. C., et al. 2006, “The Formation and Evolution of Planetary Systems (FEPS): Discovery 

of an Unusual Debris System Associated with HD 12039”, ApJ, 638, 1070
Knutson, H. A. and 8 coauthors 2007, “A map of the day-night contrast of the extrasolar planet 

HD 189733b,” Nature, 447, 183
Meyer, M. R., et al. 2008, “Evolution of Mid-IR Excess Around Sun-like Stars: Constraints on 

Models of Terrestrial Planet Formation”, ApJ, 673, L181
Swain, M. R., Vasisht, G., & Tinetti, G. 2008, “The presence of methane in the atmosphere of an 

extrasolar planet,” Nature, 452, 329
Woolf, N. J., Smith, P.S., Traub, W.A., & Jucks, K.W. 2002. The spectrum of earthshine: A pale 

blue dot observed from the ground. Astrophysical Journal 574: 430-3
Astro2010 Science White Paper: Discovering Planetary Systems of Nearby Stars 7


	1. Exoplanet Opportunities and Context
	2. Key Advances Required
	3. Scientific Discovery Potential and Compelling Questions
	Summary
	References

