Date:  May 6, 2011





Projects selected range from the development and combination of new biomedical imaging methods to better detect, analyze, and track autoimmune diseases to the investigation of adaptive imaging concepts that combine optical and mathematical methodologies to tackle issues related to security, biomedical analysis, and neuroscience.


WASHINGTON – The National Academies Keck Futures Initiative announced today the recipients of its latest round of Futures grants, each awarded to support interdisciplinary research on imaging science.  The 13 projects chosen represent a variety of approaches to such research, which was the subject of the eighth annual Futures conference, held last November. 


"We received far more high-quality proposals than funds available," said Farouk El-Baz, research professor and director of the Center for Remote Sensing, Boston University, and the 2010 conference chair.  "We scored the grants based on their interdisciplinarity, relevance to imaging science, riskiness/boldness, and the importance and potential impact if the grant is funded.  We believe that the group of collaborations selected will result in the most 'generative' findings."


These competitive seed grants aim to fill a critical gap in funding for research on new ideas.  Major federal funding programs do not typically provide support in areas that are considered risky or unusual.  The Futures grants allow researchers to start recruiting students and postdoctoral fellows, purchasing equipment, and acquiring preliminary data---all of which can position the researchers to compete for larger awards from other public and private sources.


The award recipients and their grant research topics are (Principal Investigator (PI) listed first, then co-PIs):


JASON FLEISCHER, Princeton University

THOMAS BIFANO, Boston University

SHELLEY BATTS, Stanford University

Using adaptive optics to improve imaging of the inner ear - $75,000

Adaptive optics (AO) improves imaging by adjusting the wavefront of light to compensate for aberrations in the optical path.  This project applies AO to functional, in vivo microendoscopy of the inner ear.  The proposal generalizes AO to fluid environments and holds potential for better understanding, diagnosis, and treatment of hearing loss.


RICHARD FRAZIN, University of Michigan

PETER LAWSON, Jet Propulsion Laboratory

Advanced statistical methods for exoplanet detection - $50,000

These researchers will organize a multidisciplinary workshop of experts in order to study the application of state-of-the-art statistical decision theory to the detection of faint exoplanets.  They anticipate enabling the detection of exoplanets at least an order of magnitude fainter than is currently possible.


THOMAS GRABOWSKI and JAMES BRINKELY, University of Washington


RANDALL FRANK, Self-employed

Scalable neuroimaging initiative: Tools for sharing and analyzing neuroimaging data - $50,000

Scientific imaging data are being acquired at an enormous rate, but data sharing is typically limited to descriptions (metadata) and results selected by the original investigators.  This study proposes a distributed computing framework to enable quantitative access to the experimental conditions and image data and thus accelerate multi-institutional scientific progress.


DANIEL KEEFE, University of Minnesota

KIMANI TOUSSAINT, University of Illinois, Urbana-Champaign

Intelligent interactive imaging: Coupling smart spatial visualization interfaces with real-time second-harmonic generation microscopy - $75,000

This project couples research in optics (second-harmonic generation microscopy) and computer science (3-D user interfaces and data visualization) to explore a new paradigm of intelligent interactive imaging. The research tightly integrates image acquisition and image analysis via a novel real-time interactive visualization environment that combines human and machine intelligence.


JOHN MACKENZIE and RAGA RAMACHANDRAN, University of California, San Francisco

DANNY CHEN, University of Notre Dame

FRANK CHUANG, National Science Foundation Center for Biophotonics, University of California, Davis

Multiscale biomedical imaging for autoimmune disease - $50,000

A multidisciplinary team will develop and combine new biomedical imaging methods in order to better detect, analyze, and track autoimmune diseases such as rheumatoid arthritis.  The team will focus on producing advanced imaging tools that can probe molecules and peer inside both living cells and humans.


RAFAEL PIESTUN, University of Colorado, Boulder

LILIANA BORCEA, Rice University

Adaptive approach for imaging through a highly scattering volume using spatio-temporal waveform shaping and statistical algorithms - $75,000

Efficient optical imaging through highly scattering volumetric media is arguably the next frontier in imaging science, with wide implications in microscopy, security, biomedical analysis, neuroscience, and more.  The goal of this project is to investigate adaptive imaging concepts, synergistically combining optical and mathematical methodologies to tackle this demanding imaging problem.



Building multiscale models of capillary regeneration from image-based RNA transcriptome analyses - $75,000

This project will establish an integrated approach to understand how capillaries form in tissues. Molecular-cell pathways will be interrogated via advanced hyperspectral imaging methods and a new class of erasable molecular imaging probes.  Together, these tools will facilitate multiscale modeling efforts aimed at elucidating mechanisms governing capillary formation.


MARK SCHNITZER, Howard Hughes Medical Institute and Stanford University

TERI ODOM, Northwestern University

A technology platform for high-resolution biomedical imaging in live animals using genetically targeted nanoparticles - $100,000

Recently, genetics and nanotechnology have each provided powerful techniques for biomedical imaging in animal models of human disease.  This research seeks to combine the virtues of each approach by creating hybrid technology permitting selective imaging of particular cell types in live animals at unprecedented levels of imaging sensitivity.


DEMETRI TERZOPOULOS and MANUELA ALEX O. VASILESCU, University of California, Los Angeles

A multilinear (tensor) algebraic framework for multifactor manifold learning with applications to image science - $100,000

This project will develop a multilinear algebraic framework for computer vision and image science.  By exploiting the nonlinear algebra of higher-order tensors, this new framework will yield powerful new computational methods and algorithms for detection and recognition with applications from biometrics and visual surveillance to medical imaging.


KIMANI TOUSSAINT, University of Illinois, Urbana-Champaign

THOMAS BIFANO, Boston University

RICHARD PAXMAN, General Dynamics Advanced Information Systems

Optical propagation through impenetrable materials using MEMS (OPTIMUM) - $50,000

These researchers will explore techniques for light transmission through dynamically changing, thin materials that normally appear opaque using fast, segmented deformable mirrors.  The technique will advance important imaging science applications ranging from biological microscopy through dense tissue for medical research to covert surveillance through opaque screens for defense and security.


TOM VOGT and PETER BINEV, University of South Carolina

WOLFGANG DAHMEN, Institute für Geometrie und Praktische Mathematik

Smart data acquisition for nanoscale imaging - $100,000

Imaging using high-energy electrons will become increasingly important in the future.  Electrons damage biological and organic matter, leading to distorted images with low signal-to-noise ratio. This project will explore new paradigms in data acquisition, nonlinear signal and image processing, more sophisticated data 'de-noising' and image analysis in combination with extensive simulation techniques.


ANDREW WANG, University of North Carolina

ANDREW TSOURKAS, University of Pennsylvania

Development of nanoparticle-based multiplex multimodality imaging agents for the specific and sensitive detection of cancer - $100,000

This research proposes development of a new class of imaging agents that enable multiplex and multimodality imaging.  Using cutting-edge nanotechnology, these agents will allow for the early detection of malignancies on multiple imaging platforms (MRI and SPECT) and will provide detailed biological information, which can improve tumor staging and treatment.


LIHONG WANG, KONSTANTIN MASLOV, and XIAO XU, Washington University, St. Louis

Time-reversed ultrasonically encoded (TRUE) optical focusing for biomedical imaging - $100,000

Optical imaging of biological tissue has limited depth because of strong light scattering.  It can dynamically focus light into scattering tissue.  This proposal will support further development of Time-Reversed Ultrasonically Encoded (TRUE) optical focusing to help realize its potential profound impact and broad application on optical imaging, sensing, manipulation, and therapy.


A summary of the conference, "Seeing the Future With Imaging Science," will be available online in early June at


Established through a $40 million grant from the W.M. Keck Foundation in 2003, the National Academies Keck Futures Initiative is a 15-year effort to enhance communication among researchers, funding agencies, universities, and the general public - - with the objective of stimulating interdisciplinary research at the most exciting frontiers.  The National Academies and the W.M. Keck Foundation believe considerable scientific progress and social benefit will be achieved by providing a counterbalance to the tendency to isolate research within academic fields.  The Futures Initiative is designed to enable researchers from different disciplines to focus on new questions and entirely new research, and to encourage better communication among scientists as well as between the scientific community and the public.  For more information about NAKFI, please visit  For more information about the W.M. Keck Foundation, please visit 



Maureen O'Leary, Director of Public Information, Office of News and Public Information


Kimberly Suda-Blake, Program Director, National Academies Keck Futures Initiative