
3-D Radiative Transfer in the Next Decade

E. Baron,1,2 Peter H. Hauschildt3

Abstract

Type Ia supernovae have played a crucial role in the discovery of the dark en-

ergy, via the measurement of their light curves and the determination of the peak

brightness via �tting templates to the observed lightcurve shape. However, un-

derstanding the systematics of using Type Ia supernovae as cosmological probes

will require 3-D radiative transfer calculations. Type II supernovae are also

useful as cosmological probes, but those methods also involve radiative transfer

calculations. Additionally, the connection between stripped-envelope supernovae

and gamma-ray bursts strongly argue for the necessity of 3-D radiative transfer

calculations. Thus, in the next decade the astrophysics community will require

training in what was once the arcane �eld of radiative transfer as well support

for the necessary hardware and training in high performance computing.

Subject headings: cosmology: dark energy � stars: atmospheres � supernovae

1. Introduction

In the last three decades or so supernova astrophysics has moved from a rather small

sub�eld of a�cionados to a major �eld of astrophysics. This was sparked by the discoveries of

SN 1987A in 1987 and the discovery of the dark energy in 1998. Additionally, the ability to

calculate 3-D hydrodynamics simulations (without true radiative transfer) has grown in the

last decade. Much of what we learn in astronomy comes from spectroscopic observations, and

thus in order to connect observed spectra to hydrodynamics simulations full 3-D synthetic

spectra calculations are required.

Over the last 5�10 years the trend in building high performance scienti�c computing

facilities has been to construct massively parallel systems that consist of thousands of nodes,

often with several (2�8) cores per node. We refer to an individual CPU, whether it is a single
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core or one core in a multiple core node as a processing element (PE). Due to the high cost

of RAM and cache, the amount of RAM per PE has remained typically in the range 256 MB

� 2 GB (BlueGene, Franklin).

High performance scienti�c computing is driven by the need for raw speed, but also by

the need for large amounts of RAM in order to attack scienti�c calculations in 3 dimensions

with adequate resolution. For many problems the underlying physical problem is inherently

local and thus large 3-D systems can be broken up into smaller problems and the memory

distributed across the PEs. This is the case for pure hydrodynamics, computational �uid

dynamics (CFD) and N-body calculations.

2. Radiative Transfer

Radiative Transfer is important in many areas of astrophysics: supernovae, stellar mod-

eling, iradiated stars and planets, gamma-ray bursts, and AGN. Often one desires to do

full radiation hydrodynamics but since pure 3-D hydro taxes the largest supercomputers

available, coupling hydro and radiative transfer in 3-D is beyond the capabilities of current

computer hardware. Radiative transfer is an inherently global problem since di�erent phys-

ical regions are coupled by the transfer of radiation between them and the solution of the

transfer equation requires a self-consistent determination of physically separate but radia-

tively coupled regions. Additionally, the radiative transfer equation must be solved not just

in physical space, but on the contrary in the full phase space and thus the time dependent

problem becomes a 7-D problem (3 spatial dimensions, 2 solid angle directional dimensions,

energy or wavelength, and time; see for example Mihalas & Mihalas 1984; Mihalas 1978).

For reasonable resolution, the memory requirements quickly become very large. We focus

here on characteristic methods for the solution of the transfer equation, but many of our

considerations are quite general, and thus also apply to, for example, Monte-Carlo and other

�nite di�erence methods as well.

In the last twenty years, numerical methods have been developed to treat the fully

non-LTE (NLTE) radiative transfer equation in 1-D relativistic �ows using very large model

atoms and extremely large databases for molecules. Modern numerical methods allow for

e�cient parallelization.

Due to the global nature of the RT problem each processor that calculates radiative

transfer needs to keep information on the entire physical grid. If a domain decomposion

of the spatial grid is used to spread the data between di�erent PE, di�erent solid angles

require either massive communication between di�erent PEs or domain adjustments during

the formal solution. This is theoretically possible, but for straightforward implementation

the amount of communication is prohibitive.
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The radiative transfer problem is solved when the mean intensity, J , is known. Thus,

hydro codes which claim to include radiative transfer, but specify the value of J a priori

do not solve the radiative transfer problem. The mean intensity, J , is obtained from the

source function S by a formal solution of the RTE which is symbolically written using the

Λ-operator Λ as

J = ΛS. (1)

The source function is given by S = (1 − ε)J + εB, where ε denotes the thermal coupling

parameter and B is Planck's function.

The Λ-iteration method, i.e. to solve Eq. 1 by a �xed-point iteration scheme of the form

Jnew = ΛSold, Snew = (1− ε)Jnew + εB,

fails in the case of large optical depths and small ε.

The idea of the ALI or operator splitting (OS) method (Olson et al. 1986; Olson &

Kunasz 1987; Scharmer 1984) is to reduce the eigenvalues of the ampli�cation matrix in

the iteration scheme by introducing an approximate Λ-operator (ALO) Λ∗ and to split Λ

according to

Λ = Λ∗ + (Λ− Λ∗)

and rewrite Eq. 2 as

Jnew = Λ∗Snew + (Λ− Λ∗)Sold.

To achieve a signi�cant improvement compared to the Λ-iteration, the operator Λ∗ is con-

structed so that the eigenvalues of the iteration matrix are much smaller than unity, re-

sulting in swift convergence. Using parts of the exact Λ matrix (e.g., its diagonal or a

tri-diagonal form) will optimally reduce the eigenvalues of the iteration matrix. Non-local

Λ∗ (non-diagonal) operators lead to excellent convergence rates and avoid the problem of

false convergence that is inherent in the Λ iteration method and can also be an issue for

diagonal (purely local) Λ∗ operators.

The largest storage in the 3-D RT is needed for the Λ∗ operator, which propagates

the global solution. In our implementation this operator consists of diagonal terms and

terms from nearest neighbors which at each physical point (voxel) will be 33 = 27 eight-

byte numbers. Additional storage should be less than a total of 64 eight-byte numbers.

The additional storage cost is repaid many times over with the acceleration of the rate of

convergence, dramatically reducing the computation time. Typical spatial grids will be of

order 1283 ∼ 106 points � 109 points could easily be needed, but that is far beyond the reach

of hardware that could be available in the next 10 years (see Table 1). The need to store

the entire grid in memory is due to the nature of the problem and not just the numerical

algorithm we are discussing, 3-D Monte-Carlo schemes have the exact same restriction.

Just for the radiative transfer, the storage requirements are not too severe; however, the

more severe storage requirement is that the values of the number densities of each species
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must be stored in order to calculate the wavelength dependent opacities at each wavelength

point. In a typical calculation the total number of species (ions and molecules) will be of

the order of one thousand. For the radiative transfer only total opacity at each wavelength

is required and hence one could recompute the number density at each wavelength point.

However, typical applications require from 10,000 to 1,000,000 wavelength points and thus

this memory savings would come at an enormous cost of CPU time as a solution of the EOS is

costly. This storage/computational tradeo� may be mitigated by a clever table interpolation

scheme. NLTE lines and the rate operator expand the storage per point to between 3�30 MB.

Multiplying these numbers we come to enormous storage requirements, but these can be

made tractable by domain decomposition for the structural data (EOS, opacities, NLTE).

These unsolved problems point to fruitful collaboration between astronomers and computer

scientists.

3. Applications

Table 1 shows the number of PEs needed to calculate standard astrophysical objects.

It is clear that just to handle the physical data large numbers of PEs are required. Further

parallelization over solid angle is easily implemented (see below) and can increase the number

of PEs required signi�cantly in order to keep wall-clock times below one day.

Figure 1 show visualizations of the results for 3D continuum and line transfer. The

importance of scattering is speci�ed by the �thermalization parameter� ε = κ/(κ + σ) where

κ is the absorption opacity and σ is the scattering opacity. The RT problem was solved

for ε = 1 (left panel) and 10−4 (right panel) and a formal solution with the converged

source functions was computed for given viewing angles. The graphs are actual images of

the intensities as they would be seen by an external observer di�erent angles. The visible

surface is to the left, the `sides' of the computational box could not be seen by an observer

and are shown for information only. The e�ect of scattering on the images is similar to

terrestrial fog in that it reduces the contrast of visible features; even moderate scattering of

εc = 10−4 signi�cantly reduces visibility. Limb darkening is also clearly visible in the �gures.

Figure 2 shows the wall-clock time as a function of resolution (number of momentum-

space angles nθ and nφ or number of CPUs). The computational work per CPU is kept

constant with each CPU required to calculate 16 characteristics. The modest (14%) increase

in wall-clock time from 16 CPUs to 16,384 CPUs is acceptable given the huge increase in

communication required and the fact that load balancing is quite simple.
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4. Conclusions

The advent of 3-D NLTE radiative transfer will signi�cantly enhance our ability to an-

alyze and interpret both observed spectra and theoretical hydrodynamics calculations. 3-D

radiative transfer has already shown its potential for new results in the current reconsid-

eration of solar abundances. Detailed 3-D radiative transfer will shed further light on this

problem soon, as well as on problems in iradiated stars and planets, supernovae, gamma-ray

bursts, AGN, and cosmology. Thus, both man-power and computational resources will be

required for this reinvigorated �eld in the next decade.
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Fig. 1.� Visualization of the results for the line 3D radiation transfer with εl = 1 (left) and

10−4 (right). The images are intensities in the directions φ = 25 deg and θ = 0 deg. The top

left panel is the image in the continuum, the top right panel the image at the line center, the

bottom left panel the image in the line wing, the bottom right panel is a composite image.

Fig. 2.� The wall-clock time to solve a scattering line ε = 0.1 on the the NERSC Franklin

Cray-XT4 as a function of momentum frame angular resolution. The test was run so the

amount of computational work per processor was constant. The dashed horizontal line

indicates perfect scaling. The roughly 14% communication time increase from 16 to 16,384

processors is acceptable.
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Sun (1D) 64 1 1 64 0 0 376 2048 2 2048 1

Sun 128 128 128 2× 109 1024 16000 12× 109 2048 2 1536 8032

Supernova 1000 32 64 2× 109 1000 15625 12× 109 2048 2 1548 7783

Table 1: The number of PEs required in order to calculate 3-D NLTE problems. For the Sun

we assume that only a small fraction will be calculated using periodic boundary conditions

as shown in Figure 1. For supernovae we assume that a spherical coordinate system will

be used so that the �X-direction� corresponds to radial zones and the Y and Z directions

correspond to coordinate angles.


