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In Support of Instrument Technology Development for THz Astronomy

Executive Summary
The electromagnetic spectrum from 1-5 THz is extremely rich in molecular and atomic fine structure
lines and is expected to be highly rewarding for astronomy if sensitive wideband heterodyne
detectors can be developed.  Recent developments in devices, materials, and fabrication technology
suggest that nearly quantum-limited sensitivity with ~16 GHz bandwidth on the sky should be
possible in the next decade.  The new technology will be suitable for focal-plane and beam-forming
arrays as well as conventional single element receivers and interferometers.  In recent years, due to
lack of funding, work on THz radio astronomy instruments in the U.S. has been overtaken by work
in Europe and Japan, and we believe this to be a good time to restore U.S. competitiveness.

1. Scope
This white paper considers development of wideband quantum-limited heterodyne receivers for
spectral line and continuum observations with single-pixel receivers, beam-forming arrays, and
interferometers, in the atmospheric windows at 1.1, 1.3, 1.5, 2, and 2.5 THz, and in space up to ~5
THz, substantially above the limit of current SIS receivers.

2. Technological rationale
With a focused development effort it is likely that quantum-limited heterodyne detectors suitable
for single pixel and array operation up to several THz will become practical in the next decade.
(i) The major advances in superconducting device fabrication fostered by HIFI and the high
production requirements of ALMA have prepared foundries for development of new material
systems capable of making SIS mixers for operation at frequencies beyond the limits of current
niobium-based circuits.  
(ii) Beyond SIS mixers, new devices such as the recently proposed quantum-well intrasubband
photodetector (QWISP) [1] could provide quantum limited sensitivity in the THz range. 
(iii) An obstacle to THz instrument development in the past has been the lack of suitable local
oscillator sources above a few hundred GHz. Recently, reasonably priced commercial sources have
become available to >2 THz [2], and quantum cascade lasers look increasingly promising for the
THz bands [3,4,5].  This development can be expected to continue if there is support from the
scientific community.
(iv) Improved receiver configurations using balanced and sideband-separating mixers will give
improved sensitivity and require an order of magnitude less local oscillator power, thus benefitting
array receivers as well single pixel receivers.

3. Political rationale
(i) In the last decade, the US position in sub-mm/THz astronomy instrumentation has declined
relative to that of Europe and Japan.  Europe is now ahead of the U.S. in THz receivers using HEB
mixers, and Japan is overtaking the U.S. in SIS receivers.  Examples are the development in Europe
of the Herschel HIFI instrument (480-1910 GHz using SIS and HEB mixers), and in Japan of the
ALMA Bands 8 (385-500 GHz) and 10 (787-950 GHz) using SIS mixers. 
(ii) The two US laboratories capable of fabricating ALMA-quality SIS devices have almost
foundered for lack of funding in recent years. If these laboratories lose funding, even briefly, it will
take many years to assemble a new team with comparable expertise.
(iii) The U.S. currently leads in THz local oscillator technology, as exemplified by Herschel-HIFI
and ALMA which would not have been possible without the frequency multiplier technology
developed at UMass, JPL and Virginia Diodes Inc.  In the development of quantum cascade lasers
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as THz sources, the U.S. and Europe are currently about even.  
(iv) Future development of THz technology will have commercial applications such as imaging,
non-invasive monitoring/testing, and THz chemical spectroscopy.

4. The astrochemical transformation
In the total electromagnetic spectrum of the Universe, there are three major peaks. The biggest is
the peak from the 3 K blackbody radiation relic of the Big Bang, at millimeter wavelengths. The
third strongest peak occurs near one micron–this contains the accumulated light from all of the stars
in the Universe. The second strongest occurs at about 1.5 THz or 200 microns wavelength. Light
of these wavelengths cannot penetrate the atmosphere, as it is absorbed by water and other
molecules in the atmosphere–this peak was identified only recently through satellite observations.
This spectral feature represents all of the cool (~ 200 K) objects in the Universe–clouds of dust and
gas as well as radiation from warmer sources that is absorbed and re-radiated. Radiation at the
wavelength of the peak is not accessible from the ground. Fortunately, for local objects emission
from its longer-wavelength components may be examined from high dry sites. Furthermore, at a
redshift of 1 the wavelength of the peak migrates to wavelengths below 300 microns, providing
ground-based telescopes access to this important window on galaxy assembly and evolution. ALMA
will image the cool thermal radiation which comprises most of the photons in the Universe, photons
emitted by stars and planets during their formation processes, as well as warmer radiation from the
distant Universe which is shifted into its range by the expansion of the Universe.

Fig. 1.  A comparison of atmospheric transmission in the THz frequency regime from
ALMA (black, 5000 m), CCAT (red, 5612 m) and the Stratospheric Observatory for Infrared
Astronomy (SOFIA; blue, flying at 12.5km. The amount of precipitable water vapor for the
earthbound sites are 0.2 mm.
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Fig. 2.  The atmospheric transmission from the CCAT site plotted to show the location of the
lines included in Table 1. Dotted lines denote those transitions which do not fall in an clear
window unless they are emitted from a source whose expansion velocity redshifts it there.

In addition to this continuum radiation, the THz spectral regime, covering frequencies from 1 to 5
THz, includes spectral line emission from many important molecules (HD, CO, OH, CH and HeH+,
SiH, FeH, and MgH) and atoms (C I, C II, O I, O III, N II, N III, S I and Si I) – Fig. 2 and Table 1.
Radiation in these lines may be quite strong. For instance, the C II line at 1.9 THz may radiate 1%
of the luminosity in its parent Galaxy in that single line. Unfortunately, this strong dust and line
emission is blocked at its rest wavelengths by the atmosphere. Observations are possible from the

Table 1. Summary of Important Atomic and Molecular Transitions at THz Frequencies
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ground for some redshifts. Alternatively, observations may be made from airborne platforms, such
as SOFIA (flying at 13km), or from space. Unfortunately, the collecting areas available on flying
and space platforms are limited. Ground, airborne and space observations all need sensitive detectors
to see faint lines from distant objects.

5. Current instrumentation
The current best laboratory results for THz heterodyne receivers are summarized in Fig. 3 which
includes receivers using both SIS and HEB mixers. It is clear that current SIS mixer receivers suffer
degraded sensitivity above ~1 THz.  While HEB mixer receivers have shown good sensitivity in the

1-3 THz range, their IF bandwidth is limited by the hot electron relaxation time.  Also, potential bias
instability in HEB mixers [7] makes them problematic for use in multi-element arrays.  For these
reasons HEB receivers (square markers) are outside the scope of the present document. 

6. The next generation of THz heterodyne receivers
Advances in THz heterodyne receivers in the next decade are likely to come from a combination of
new technology and improvements in existing technology.  The development of new devices such
as semiconductor quantum-well detectors should be supported, and also the exploration of new
superconducting materials for SIS mixers.  Significant improvements will also be accomplished by
using receiver configurations which minimize noise from extraneous sources (LO, atmosphere) and,
important for array receivers, which make efficient use of LO power.  New THz oscillators will
make large heterodyne array receivers feasible.

6.1 New mixing devices
While SIS mixer technology can probably be extended to operation substantially above 1 THz with
the development of new materials and fabrication techniques, progress will become more difficult
at the higher frequencies.  Quantum-well detectors appear to hold promise for the THz range [1,8].
They have the potential for wide IF bandwidth, and the  low quantum efficiency of early FIR
quantum-well detectors may be overcome, for example, by the quantum-well intrasubband

Fig. 3.  Heterodyne receiver sensitivity vs frequency, for receivers using SIS and HEB
mixers. Inverted triangles are NbN/NbTiN results corrected for the LO injection beam
splitter loss [6].
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photodetector (QWISP) [1].

6.2 New frequency sources (local oscillators)
Quantum cascade lasers (QCLs) are an emerging technology that has considerable promise above
2 THz as a versatile LO source.  At this frequency, multiplier technology is difficult due to the
number of multiplier stages that must be cascaded, and output power is minimal. By contrast, QCLs
work better with increasing frequency and can produce >1 mW output power above 2 THz.  They
can be phase locked for extended periods of time [3].  The present difficulties with using QCLs are:
(a) multi-mode oscillation, spreading power into several nearby frequencies, (b) very poor output
beam pattern and (c) limited tunability. Tunability may be increased with more advanced resonator
design, but will always be limited by the quantum-well structure. Improved resonators  [4] should
also concentrate power into a single mode.  The beam pattern is inherently quite divergent, but work
is ongoing to convert this to a more desirable mode  [5].  In the last four years progress has been
very rapid on all of these fronts, and work is proceeding at several institutions. 

6.3 New materials for SIS mixers
The great majority of receivers currently in use for mm/sub-mm radio astronomy use niobium SIS
mixers.  The superconducting energy gap of Nb (TC ~ 9 K) limits its use in low-noise receivers to
~700 GHz, with operation at reduced sensitivity at higher frequencies.  The superconductor NbTiN
has Tc ~15 K, implying operation to ~1.2 THz if high quality all-NbTiN junctions could be made,
but so far NbTiN has only been used in combination with Nb to make SIS mixers with good
performance to ~1 THz. All-NbTiN SIS junctions were briefly explored using MgO  [9] and AlN
[10] barriers with fair initial results (gaps of ~5 mV but Rsg/Rn of only ~6) before researchers
realized that the Nb/Al-AlN/NbTiN material stack was easier to optimize. Now that
Nb/Al-AlN/NbTiN junctions of very high quality have been obtained [11] there is a good likelihood
that all-NbTiN SIS junctions will become practical, opening the way to quantum-limited SIS
receivers up to ~1.2 THz (and usable with reduced sensitivity to ~2.4 THz).  Additionally, it is
reasonable to expect that other A15 superconductors, e.g., Nb3Ge with TC = 23 K, which have
received very little attention to date, could yield high quality SIS junctions capable of operation
somewhat beyond 1.2 THz. 

Two other superconducting materials, so far unexplored for SIS mixer applications, are BKBO
(Ba(1-x)K(x)BiO3, Tc = 34 K) and magnesium diboride (MgB2, TC = 39 K).  SIS mixers based on these
materials could permit quantum-limited operation as high as 2.6 THz and 3 THz.  BKBO is one of
only two high-temperature oxide superconductors which is isotropic, the other being BKFA [12].
Simple BKBO grain-boundary junctions have shown good I(V) characteristics similar to those of
Nb junctions, but a method for producing well controlled junctions has not been developed.  MgB2
has dual energy gaps which may complicate its use as a THz mixer, but its potential should be
explored.  Development of new materials such as BKBO and MgB2 for THz receiver applications
is a high risk, long term project, but success could revolutionize mm/sub-mm receiver technology.

There is currently no funding for work on superconducting materials with medium critical
temperatures (15-40 K) which could conceivably permit quantum-limited heterodyne detection to
~2.6 THz (and usable with reduced sensitivity to ~5 THz).

6.4 Configuration
The growing interest in radio cameras – beam-forming arrays and focal plane arrays of receivers –
in the millimeter bands will extend into the THz range once the technology can support them.  For
such multi-element receiver arrays, provision of sufficient LO power in the low THz range is
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difficult unless balanced mixers are used.  With the development of a compact superconducting
wideband IF hybrid (Fig. 4), balanced mixers can be developed which will require 30-50 times less
LO power than corresponding single-ended mixers.

Using a balanced mixer also simplifies LO injection.  A typical sub-mm radio astronomy receiver
uses a beam splitter to couple LO power into the mixer.  The loss from the beam splitter in the signal
path significantly degrades the receiver sensitivity, as is clear from the erect and inverted triangles
in Fig. 3.  With a balanced mixer, the LO port is separate from the signal port.

An additional advantage of balanced mixers is their inherent rejection of LO noise.  A serious
limitation of multiplier-chain LO sources can be their noise in the receiver sidebands [14,15].  With
sufficient engineering effort it is possible to minimize the excess noise, as was done in the case of
the ALMA LOs.  However, making a good LO with a multiplier chain which is broadband and has
low noise is difficult and expensive – a better solution is to allow a noisier LO and use a balanced
mixer. In addition to the lower LO power requirement, this makes the balanced mixer configuration
very attractive for THz operation.

For terrestrial spectral line observations, the opacity of the atmospheric windows significantly
degrades system sensitivity, even under the best conditions.  To eliminate the atmospheric noise
from the image band, sideband-separating mixers should be developed.  These have the added
advantage of separate upper- and lower-sideband IF outputs, each with the full bandwidth of the
receiver, which can be crucial in unraveling complex spectra. Millimeter wave receivers with
sideband-separating mixers have given outstanding results [16].

Above ~1 THz there has been considerable success with so-called quasi-optical mixers which use
a planar radiating structure on the flat surface of a lens, often silicon [6].  While the quasi-optical
configuration avoids very small waveguide structures, it is not well suited to balanced mixers nor
to sideband-separating mixers.  Although quasioptical balanced and sideband-separating mixers are
possible, they require the use of relatively large quasioptical LO couplers and/or interferometers in
the signal path which reduce sensitivity and are difficult to incorporate into arrays of any substantial
size.  It seems likely that the next generation of nearly quantum-limited THz heterodyne receivers
will adapt the waveguide technology well established in the sub-THz bands.  Approaches to
fabricating waveguide receivers up to several THz are discussed below.

6.5 Fabrication
In recent years there has been considerable progress in  the fabrication of circuits for
millimeter/sub-millimeter wavelengths.  Thick quartz substrates have been replaced by silicon
membrane and beam lead technology [17], and new micromachining methods allow rectangular
waveguides to be used well into the THz range. 

Fig. 4.  Superconducting 4-12 GHz 180°-hybrid on a quartz chip.  Dimensions:  1.42 mm
x 0.51 mm.  [13].
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Advanced micromachining will play an important role in the development of THz technology for
radio astronomy.  The best CNC milling machines have a position accuracy of ~1 micron, and with
the smallest cutters available (~25 microns diameter) could machine simple waveguides and
radiating structures for operation to ~5 THz.  However, the essential circuit elements (transducers,
hybrids, couplers) have features an order of magnitude smaller and will require microfabrication
methods in conjunction with conventional machining.

Several micromachining processes currently under development are applicable to fabrication of THz
detectors.  Bulk-silicon micromachining via deep reactive-ion etching (DRIE) and surface
micromachining of SU-8 photoresist both utilize photolithography to define a pattern with
sub-micron resolution.  DRIE Si processes are not selective to specific silicon crystal planes (as are
many wet etchants) and can therefore realize vertical sidewalls. This process has been used to create
waveguide structures including couplers and filters [18]. SU-8 is an epoxy photoresist with
extremely low optical absorption which allows layers as thick as several hundred microns to be
exposed using standard UV lithography to obtain aspect ratios as high as 10:1.  With subsequent
metalization, it has been used for components with integrated horn antennas up to 1.6 THz as well
as couplers and resonators as low as 300 GHz [19].  Another process under development but not yet
demonstrated in the context of THz technology is deep ICP (inductively-coupled plasma) etching
into metal and insulator structures.

These fabrication processes are directly applicable to single detectors and to one-dimensional
(linear) arrays of detectors, and, with further development, should be applicable to monolithic
two-dimensional arrays.  In the interim, focal plane array receivers consisting of multiple parallel
linear arrays will greatly increase observing speed relative to a single-pixel receiver.

6.6 Radiating structures
Corrugated horns have a circularly symmetric beam, low cross polarization and wide bandwidth and
are the best choice for feeding radio telescopes in the millimeter bands.  With the development of
high precision computer controlled lathes, corrugated horns have been successfully fabricated up
to about 1 THz, but at higher frequencies, the dimensions pose manufacturing difficulties. Diagonal
horns have been used but have much lower usable bandwidth and higher cross polarization.  In
recent years, a type of smooth-walled horn possessing most of the desirable characteristics of the
corrugated horn has been developed [20].  It has a spline profile optimized to give the desired
radiation pattern.  With the use of CNC machining, possibly combined with the micromachining
processes described above, it should be possible to machine this type of horn directly into a
split-block waveguide structure as an integral part of a mixer.  Application to monolithic receiver
arrays, linear or two-dimensional, should be straightforward.

7. THz array receiver technology
First generation submillimeter arrays [21-24]
were constructed using discrete components,
stacking individual mixer blocks in a
common cryostat. A quasi-optical diplexer in
the signal path was used to inject the LO
power to the mixer array. With this approach
array sizes up to 16 pixels have been made.
For larger arrays a greater degree of
integration will be required to control the
cost. An example is SuperCam, a 64-pixel, Fig. 6. SuperCam 1 x 8 mixer module.
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345 GHz camera nearing completion at the University of Arizona [25]. The focal plane unit is
composed of 8 mixer modules, each a 1 x 8 array of mixers machined into a single split block (Fig.
6). The SIS devices are made on 3-μm SOI membranes with self aligning beam leads [17].
Low-noise, low-power MMIC IF amplifiers are integrated into the block and bonded directly to the
IF output of the SIS devices. This 1-dimensional level of integration has made the construction of
this size array practical, both in terms of packaging and cost. 

For future large submillimeter telescopes, such as the planned 25m Cornell-Caltech Atacama
Telescope (CCAT), large format cameras are essential to nearly all the science programs.
Heterodyne cameras with as many as 1k pixels are already being considered for CCAT, but even

with the underfilled array shown in Figure 7, a 1 k pixel camera at 0.65THz would have a field of
view of only ~5'. Nearby star-forming regions are much larger, and CCAT's field of view is ~0.3deg,
so there will be a need for even larger cameras.

Kilo-pixel heterodyne cameras (KCAMs) will probably require integrated 2D arrays of horns and
mixers (Fig. 7). This same basic architecture is already being used for incoherent, bolometer arrays,
but heterodyne cameras are more complex because they require local oscillators, an IF amplifier and
a spectrometer for each pixel. The key enabling technologies are micromachining (for arrays of
backshorts and horns, e.g., platelet
corrugated horns [26]) and packaging (for the
individual detectors, arrays of mixers, IF
amplifiers and local oscillator distribution).

A higher level of integration often leads to
leaps in performance at a reduced price. This
already appears to be the case for heterodyne
cameras (Fig. 8). The cost of the
spectrometers for a large format camera has
historically been prohibitive, but
developments in computing systems (e.g.,
arrays of reconfigurable gate arrays) are
driving the cost down rapidly. Heterodyne
camera spectrometers will certainly benefit
from the substantial investment in digital

Fig. 7.  Section of KCAM 2-D integrated array.

Fig. 8. Cost per pixel for heterodyne arrays built at the
University of Arizona. The points for a single pixel
receiver, PoleSTAR (multiple mixers in the same cryostat)
and SuperCAM (1-d integration) are actual costs. 
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signal processing for the SKA. The associated correlator developments would also allow small
heterodyne receiver arrays to be deployed on interferometers (e.g., ALMA) to substantially increase
the throughput. 

Large coherent arrays are the subject of a separate Astro2010 White Paper lead by Paul Goldsmith
of JPL.

8. Level of effort
Assume eight related sub-projects at multiple institutions – e.g., SIS junction development,
materials, mixer design, array design, fabrication technology, etc. The quantum of funding for this
kind of work is currently ~$400k/year.  Hence the total funding should be ~$3.2M/year for 10 years.
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