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Abstract

Twenty-first century astronomy faces unprecedented data analysis challenges. Many current and
forthcoming data sets are so huge or so complex that astronomy does not possess, and cannot
easily develop on its own, the means to effectively distill understanding from the data. In re-
cent years astronomers have begun partnering with information scientists—statisticians, computer
scientists, applied mathematicians, and engineers—to address a variety of these challenges in sev-
eral isolated areas. Two new disciplines—astrostatistics and astroinformatics—are emerging from
these astronomy/information science (“Astro/Info”) collaborations. Astro/Info research has made
important contributions to modern astronomy, but its impact and rate of growth have been seri-
ously limited by several obstacles, largely arising from the novel, interdisciplinary nature of the
work. Primary obstacles include: (1) The absence of community-level support mechanisms for
Astro/Info research and education. Such mechanisms would foster training of new Astro/Info re-
searchers, and communication (of both expertise and software) within the Astro/Info community,
between that community and the wider astronomical community, and between astronomers and
information scientists. Absent these mechanisms, astronomers ineffectively build on the accu-
mulated expertise of information scientists and Astro/Info colleagues, increasingly often wasting
resources “reinventing the wheel.” (2) The absence of adequate research support. Astro/Info re-
search is a poor fit for the majority of astronomy research programs, which are oriented around
the traditional observer and theorist specialties. Also, interdisciplinary proposals fare poorly in
the disciplinary review process followed by almost all programs. The few programs tailored to
interdisciplinary astronomy research have minuscule resources in comparison to the need.
As a result of these obstacles, the ability of US astronomers to effectively use modern data is
falling behind both the needs of our discipline, and the capabilities being developed in other data-
intensive disciplines, at an accelerating pace. We recommend specific initiatives to address these
issues. These initiatives would require a modest funding investment of a few million dollars per
year, paying back disproportionately large dividends in data analysis capability.
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1 Introduction
Twenty-first century astronomy is increasingly an applied information science, with new dis-

coveries relying more and more on use of advanced tools from statistics, computer science, ma-
chine learning, data mining, and other information sciences. Rapid developments in two comple-
mentary directions are driving this revolutionary change in our discipline. Most prominently, we
are in the midst of a period of explosive growth in the sizes of survey data sets. Modern survey
data sets do not merely strain conventional data handling and analysis techniques; they completely
defeat them. Astronomers need new tools for data management, exploration, and analysis, that
not only use cutting-edge information science technology, but that push the edge, requiring new
information science research. The second direction of development is less dramatic and circum-
scribed, but no less important. It is the steady growth in complexity of modest and small data sets
(some produced by complicated reduction of large data sets), and of the physical and phenomeno-
logical models developed to understand them. This complexity raises a host of problem-specific
challenges for data analysis that increasingly demand fundamental interdisciplinary research in
methodology and computational implementation, not just to maximize the science return from the
data, but also to ensure basic accuracy of scientific conclusions in settings where new complexities
can actually invalidate familiar methods.

Two disciplines have arisen to meet these needs. Astrostatistics weds the tools of statistics to
the needs of astronomers. It focuses on probabilistic modeling of data and quantification of uncer-
tainty. Astroinformatics addresses the wide variety of concerns arising in managing, exploring,
and analyzing extremely large data sets—observational or from theory-based simulation—whose
size thwarts straightforward application of standard methods (including optimal astrostatistical
methods). It relies most heavily on developments in the emerging fields of informatics and knowl-
edge discovery from databases (KDD). Together, astrostatistics and astroinformatics comprise the
advanced research arm of an emerging new data analyst specialty in astronomy, complementing
the traditional specialties of observer and theorist, and focusing on the interface between obser-
vation and theory. For brevity, we refer to them jointly as Astro/Info, denoting astronomical
applications of information sciences.

The majority of the over 80 signers of this Position Paper (and a companion paper focusing
on astroinformatics) are astronomers and astrophysicists working in these new disciplines. The
authorship also includes over two dozen leading information scientists working in the disciplines
of statistics, computer science, signal processing, and applied math, who have joined forces with
astronomers to pioneer astroinformatics and astrostatistics. We argue here that vigorous growth of
these new disciplines is crucial to the health of twenty-first century astronomy, but that they are
poorly served by existing support structures in astronomy and information sciences. We offer a
variety of recommendations for improving the situation.

In fact, the situation is dire. Just as the need for Astro/Info research is escalating, support
is significantly declining, as we document below. This trend stands in stark contrast, not only
to the growing need, but also to trends in other disciplines with similar needs (most notably the
biological and geological sciences). These developments move in the opposite direction of what is
required to achieve many of the science goals Astro2010 will be advocating for, and set up the US
astronomical community for a dramatic mismatch between its capability to produce data, and its
capability to understand that data and use it to guide theory. This constitutes a potential impending
crisis for US astronomy that we urge the Astro2010 survey to address in strong, concrete terms.

2 The Key Role of Astro/Info in 21st Century Astronomy
Statistics emerged in the 18th-19th centuries in response to data analysis problems arising

in astronomy and geodesy. But through most of the 20th century, biological, industrial, social
scientific and medical problems became driving forces in the development of statistics. Through
the 20th century, astronomers were for the most part consumers rather than developers of the
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resulting statistical methods, mostly relying on basic methods developed in the first quarter of
the century (e.g., χ2 and maximum likelihood fitting, periodograms and spectral analysis). But
by the last quarter of the century, a number of astronomers in different corners of our discipline
began to see the need for improved methods. Some developed new methods on their own (e.g.,
Lynden-Bell’s C− method for adjusting luminosity functions for detection thresholds; the Lomb-
Scargle periodogram for periodicity detection with unevenly sampled data). Others, sometimes
in collaboration with statisticians, mined the statistics literature, adapting methods developed for
other disciplines to meet astronomers’ needs (e.g., survival analysis methods to account for upper
limits in population analysis; linear regression with errors in X and Y ; advanced spectral analysis;
Bayesian analysis for Poisson processes and CMB data analysis).

By 1991 the community of astronomers and statisticians doing significant astrostatistical re-
search was large enough to justify an interdisciplinary conference, the first Statistical Challenges in
Modern Astronomy (SCMA) conference, organized by astronomer Feigelson and statistician Babu
at Penn State. The community grew steadily through the 1990s, increasingly driven by the advent
of large surveys. Tools from machine learning and data mining made their appearance, especially
for automated discovery and classification in survey databases (e.g., naive Bayes, empirical Bayes,
and neural network classifiers).

For the third SCMA conference in 2001, theoretical cosmologist Joe Silk was invited to ob-
serve the conference and provide a theorist’s perspective on the activity at the conference’s clos-
ing. He argued that the turn of the century marked the emergence of an important new specialty
in astronomy, which he dubbed data analyst; but he predicted obstacles to the growth of this spe-
cialty:

Astronomers divide into three types: observers, theorists and data analysts. . . . The
data analysts are a relatively recent breed . . . who are having a difficult time . . . being
neither fish nor fowl, not completely acceptable as either observer or theorist. [Silk03]

He urged data analysts to persevere in building the new specialty, noting that “now is an especially
opportune time to explore more extensive collaborations,” deeming the need for interdisciplinary
research “urgent,” and arguing that scalability would require computer scientists to become increas-
ingly important in such collaborations. He closed by noting that “the challenges are immense, but
so are the potential rewards.”

Data analysts must share an observer’s expertise in understanding the data and a theorist’s
expertise in physical modeling, but must also master tools in knowledge discovery and uncertainty
quantification from the information sciences. As a result, despite significant recent growth of the
Astro/Info community, its efforts still do not have a natural place within the organizational and
funding structure of astronomy.

Despite these difficulties, impressive results have recently emerged from Astro/Info research.
We highlight a few cases here, with additional information and numerous further examples pre-
sented on our web site.

Massive survey data sets: SDSS, Pan-STARRS, LSST. The most prominent driver of As-
tro/Info research is the rapid growth in size and dimension of data sets produced by large-scale
surveys. Modern data sets are so enormous that there is no hope for exhaustive examination of
a significant fraction of the data by humans. Discovery and analysis must increasingly rely on
sophisticated automated methods. Moreover, many data sets are so large that even implementing
straightforward techniques, such as nearest neighbor searching or kernel density estimation, is ut-
terly hopeless without use of sophisticated algorithms that push the edge of computational statistics
research.

The best current examples of these challenges have arisen in the management and analysis
of SDSS data. SDSS Data Release 7 (DR7, released in 2008) contains over 15 TB of images
and 3 TB of raw spectra, with catalog summaries containing photometry for 357 million objects,
and reduced spectra for over 1.6 million objects. To manage this huge data set, SDSS astronomers
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partnered with information scientists from Microsoft and academic computer scientists and particle
physicists to build the Catalog Archive Server (CAS) and its various interfaces, including the
SkyServer web interface. While many routine astronomical queries can be handled with CAS
deployed on off-the-shelf systems, large-scale queries require specialized tools. To support such
queries, Szalay et al. have developed the GrayWulf system [BHS09]. This systems takes a “storage
brick” approach, optimizing each component of a cluster for high-speed data access. GrayWulf
won the 2008 Storage Challenge by executing an SDSS query in 12 minutes that would take 13
days on a traditional database system.

For large-scale analysis of SDSS data, the International Computational Astrostatistics (InCA)
group, hosted at Carnegie Mellon University and University of Pittsburgh, assembled an interdis-
ciplinary team to develop efficient algorithms capable of performing key statistical algorithms on
large data sets. A foundation of their approach is adaptation of modern proximity data struc-
tures, such as kd-trees and metric ball trees, for statistical algorithms such as nearest-neighbor
searches and kernel density estimation. InCA algorithms have seen numerous applications to SDSS
data. A recent milestone is the cataloging of a million SDSS quasars with photometric redshifts
[Rich+09a]. The automated quasar classifiers and photo-z estimators used for this work relied on
InCA algorithms; the same team has just produced a new, eight-color Bayesian quasar classifier
that combines SDSS and Spitzer data to improve accuracy [Rich+09b].

During the coming decade, Pan-STARRS and LSST will produce 10 and 30 TB of data per
night. The LSST image database will be ∼ 150 PB and its multi-epoch source catalog will occupy
∼ 50 TB. The temporal dimension of the datasets will enable spectacular breakthroughs—provided
that methodology and algorithms commensurate to the tasks are developed. Early Astro/Info
efforts motivated by this upcoming data deluge include fast identification of planetary transits
[Prot+05], a classification broker for rapid transient classification [Born+08], and intelligent di-
mension reduction [Rich+09, Pese+09]. Our companion paper discusses LSST astroinformatics
challenges in more detail; see also the LSST petascale data challenges web site.

Complex data and models: Imaging. Images are the lifeblood of astronomy, and exhibit a
diverse range of complexity. Raw imaging data—counts in CCD pixels, interferometric visibilities,
directions of photons in a gamma-ray tracker—may bear a complex relationship to the underlying
true image (intensity vs. direction). The imaged system may itself be complex, with a mix of dif-
fuse structures on many scales, and unresolved point sources. Astronomers were early innovators
in image analysis, particularly image deconvolution. But in recent decades the the image process-
ing community outside of astronomy has made great progress in deconvolution, feature extraction,
and image modeling; much of this work has great potential for astronomy. Astro/Info researchers
have just begun to tap into this expertise. We cite a few recent highlights; further examples are on
our web site.

An important theme of recent image processing research is multiscale methods: methods
capable of adapting to spatially-varying smoothness in images. A team of statisticians and as-
tronomers in the California-Harvard Astrostatistics Collaboration (CHASC) recently developed a
probabilistic multiscale image model, using it as the basis for a deconvolution algorithm for Chan-
dra images [Esch+04]. Importantly, this algorithm provides not just a best image, but also error
estimates. A team of Caltech astronomers at the Spitzer Science Center have adapted multiscale
methods from the computer vision and image processing literature to Spitzer image analysis. Their
approach is based on a mathematical correspondence between convolution and a linear diffusion
equation (and its nonlinear generalization) that enables smoothing without smearing diffuse fea-
tures or localized objects [Pese+08]. Scargle’s influential “Bayes Blocks” algorithm for optimal
multiscale segmentation of time series is being generalized for images and other multi-dimensional
processes [Scar+03]. Statisticians and engineers are currently generalizing wavelet-based methods
to the low-counts Poisson regime, expanding the wavelet basis to include components such as
curvelets and platelets, and further generalizing to hyperspectral “image cubes.” A monograph and
recent papers introduce these methods to astronomers [Star+06, Will07].
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Complex data and models: Precision cosmology. Precision cosmology is one of the most
impressive success stories of modern astronomy. Tremendous advances in observational technol-
ogy were the key enabler for this revolution. But analysis of the new data required significant
advances in data analysis methodology that have played an important role in precision cosmology.

Cosmological parameter estimation per se is challenging, not because of data set size, but
because of complexity in the data and models. The data directly analyzed in these calculations
are modest-dimensional data products derived from the large CMB and LSS raw datasets (e.g.,
CMB multipole and large scale structure (LSS) correlation function estimates). But calculating
predicted values for these quantities from physical models, and calculating the probabilities for
the noisy, convolved observables from the predictions (the likelihood function), are both compu-
tationally expensive. Strong nonlinearities and significant noise and correlations preclude making
simplifying Gaussian approximations. Finally, information from diverse types of data (e.g., CMB,
LSS, weak lensing, and SN Ia data) must be combined correctly and optimally.

A Bayesian approach, implemented using Markov Chain Monte Carlo (MCMC) computa-
tional techniques, has become the standard tool for cosmological parameter estimation and model
comparison. Such methods first became widespread for analysis of COBE CMB anisotropy data;
today they are the mainstay of this field, with recent WMAP papers providing good examples of
the approach in action [Dunk05, Dunk09]. It is noteworthy that early MCMC implementations,
using simple algorithms, were inefficient and of limited accuracy. Significant improvements came
when astronomers invested substantial effort to learn advanced methods in the statistics literature.
In the US, the work of Wandelt’s group pioneered this effort [Wand04, Chu+05]; UK astronomers
are similarly exploring new MCMC directions; see the CosmoMC project site.

A team of statisticians and physicists at Los Alamos National Lab is pioneering an important
new direction for this research: acceleration of cosmological model exploration via use of a care-
fully trained fast, nonparametric Gaussian process (GP) “emulator” for the cosmological model
[Heit+09]. This emulator approach is already common for uncertainty management with complex
climate and hydrological models. In a related development, a team of applied mathematicians
and astronomers have developed clever approximation techniques enabling scientists to implement
flexible, adaptive GP models for large data sets; their showcase application was a new photo-z
algorithm for the SDSS galaxy catalog [Fost+09].

Complex data and models: Chandra X-ray spectroscopy. Detailed modeling of X-ray
spectra demands accounting for diverse and complex instrumental effects (response functions,
pulse pile-up), and modeling photon counting data in the non-Gaussian low-counts regime. Accu-
rate methods must handle strong model nonlinearity, and quantify uncertainty not only in parameter
estimates, but also in the number of model components underlying the data (e.g., the number of
spectral lines). The CHASC collaboration was initially formed to address just these challenges; it
was initially supported by the Chandra X-ray Center (CXC). CHASC scientists have developed al-
gorithms using cutting-edge MCMC methods to model Chandra data accounting for all the effects
just mentioned; they can flexibly handle both continuum spectra and both broad and narrow lines
[vD+01, Park+08]. Their current research is exploring how to quantitatively account for systematic
errors in X-ray spectral modeling and imaging.

Our web site provides a “Showcase” with capsule summaries and references for numerous
other Astro/Info research efforts—from the recent past and in progress—including work on: flexi-
ble modeling of astronomical populations from survey data with selection effects and measurement
errors; MCMC methods for analysis of exoplanet radial velocity data; nonparametric methods for
estimating dark matter distributions in dwarf spheroidal galaxies; new inversion methods for helio-
seismology data with improved uncertainty estimates; adaptive experimental design methods for
optimal scheduling of observations; optimal tradeoff between statistical power and computational
cost in searching large feature spaces; and other diverse problems.

Astro/Info training efforts. Supplementing and supporting such research efforts, astronomers
are also making increasing efforts to train young astronomers with information science skills tar-
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geting our discipline’s needs. A number of astronomers have recently authored books and mono-
graphs on statistics for astronomers; our web site contains a list of these with full bibliographic
information. CHASC astrostatisticians have organized numerous astrostatistics sessions, at AAS
meetings and at topical conferences, where new methods have been discussed in a tutorial manner.
These sessions are always well-attended. The Center for Astrostatistics (CASt) at Penn State has
hosted an annual Summer School in Statistics for Astronomers and Physicists since 2005, provid-
ing students a solid foundation in well-established statistical methods. (CASt has also organized
two schools in India, and one in Brazil.) The school is regularly oversubscribed with only minimal
advertising; there is clearly great interest in statistics among young astronomers. It teaches roughly
70 students annually, about a third from the US. This amounts to reaching about 10% of the the
world’s astronomy graduate students.

Astro/Info impact on statistics. Astro/Info also has a growing role within the information
sciences, particularly in statistics. The last decade has seen a number of high-profile overtures from
statisticians to the astronomy community. Some of the nation’s most distinguished statisticians (in-
cluding NAS members Berger, Bickel, Breiman, Donoho, Efron, and Johnstone) have turned their
attention to astrostatistical research problems and have published in the astronomical literature.
In the last year alone we note the following events: two special issues of prominent statistics
journals were devoted to astrostatistics, with articles authored or co-authored by astronomers; the
annual Joint Statistical Meetings (JSM, the counterpart to AAS meetings) hosted not just one but
two invited sessions on astrostatistics; and the departing president of the International Society
for Bayesian Analysis (ISBA), in his farewell letter, singled out astronomy as an area in which
members should build collaborations. Two years ago the NSF-supported Statistical and Applied
Mathematical Sciences Institute (SAMSI) in North Carolina ran a semester-long astrostatistics pro-
gram that hosted an interdisciplinary workshop, week-long astrostatistics and astronomy schools,
and three astrostatistics working groups. These are just the most recent examples of overtures from
the statistics community (we provide a more extensive list on our web site). Clearly, information
scientists see a breakout role for Astro/Info in the 21st century.

Astro/Info career skills. In his recent study of the production and employment of PhD as-
tronomers in the US [Metc08], Metcalfe reported that though 87% of first-year astronomy graduate
students plan on academic careers, the limited supply of permanent academic positions results in
fewer than 50% ultimately obtaining academic positions. He describes this as a “persistent gap
between expectations and reality,” arguing that “graduate programs in astronomy should prepare
their students for this reality” and urging faculty to “nurture appropriate skills in the next genera-
tion of astronomers.” Information science skills represent a sound investment for young scientists;
such skills can serve them in academic positions, in the astronomy research and support positions
that employ an increasing fraction of astronomer PhDs, or in technical jobs in the emerging in-
formation economy, should some of these scientists leave astronomy. By providing these skills,
astronomy departments serve not only the students and our discipline, but also the national need
for an information sciences workforce; indeed, astronomy may act as a new channel attracting
people to such careers. Few astronomy departments are in the position to provide these skills to
their students. But growth in Astro/Info research and training support can improve this situation,
simultaneously serving the scientific needs of our discipline, and our ethical duty to our students
to prepare them for sustainable careers.

3 Current Support for Astro/Info Research and Education
Long-standing Astro/Info collaborations, such as InCA and CHASC, illustrate the potential

for interdisciplinary research during the coming decade. These collaborations started in the late
1990s and each have involved 20–30 researchers and students from several fields. Funding has
come from various NSF grants (usually initiated from the statistics program in the Division of
Mathematical Sciences (DMS) with AST co-funding), the CXC, and NASA grants (ROSES Ap-
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plied Information Systems Research (AISR) and Astrophysics Data Analysis (ADP) programs).
For a brief period during 2004–06, the NSF had a Mathematical Sciences Priority Area with Astro-
nomical Sciences (MSPA05), that funded astronomical research with a strong research component
in any DMS-funded area. The NSF also provided a large grant to develop methodologies for the
Virtual Observatory. The recent demise of the Long-Term Space Astrophysics (LTSA) program
and the explicit orientation of ADP away from methodological research has essentially closed
off two support channels for Astro/Info research. NASA had a Research in Intelligent Systems
(RIS) program but it primarily targeted planetary and Earth science missions and was terminated
around 2004; the burden of funding RIS-nurtured work fell to AISR, further straining its limited
resources. The Chandra, WMAP, and Spitzer science centers have supported intramural astrosta-
tistical research, and the LSST project has methodological work embedded in its data management
and science working groups. But no satellite mission or telescope project provides extramural or
competitive funding for Astro/Info research. The LSST system architects recognize the crucial
role of extramural Astro/Info research and are building a data analysis framework that supports
integration of algorithms developed by science collaborations not affiliated with LSST, with the
expectation that the majority of science with LSST data will be done by external collaborations.
But the machine learning Astro/Info research that must be undertaken by these collaborations will
not be funded via the LSST construction project.

Other structural impediments to Astro/Info funding are consistently faced. Cross-disciplinary
proposals rarely receive high ratings from disciplinary review panels; a proposal with a strong
computer/statistical science research component must necessarily devote less space to its astron-
omy component, and vice versa. Only NASA’s long-standing AISR and NSF’s 2004–06 MSPA-
AST programs have had strongly cross-disciplinary review panels. Poor communication to and
within the Astro/Info community led to MSPA-AST being under-utilized (the vast majority of our
authorship did not know it existed during its operation), and the program ended due to apparently
limited interest. AISR has had visionary leadership and effective organization, but serves too many
constituencies (including Earth, space, solar, and planetary sciences as well as astrophysics) with
resources too minuscule to be effective.

The NSF has sponsored a number of large, foundation-wide interdisciplinary initiatives in-
cluding Knowledge and Distributed Intelligence (KDI), Information Technology Research (ITR),
Science and Engineering Information Integration and Informatics (SEIII), and the large and grow-
ing Cyber-Enabled Discover and Innovation (CDI). For reasons that are not clear, most Astro/Info
attempts for support from these programs have failed although a few are active.

Altogether, most Astro/Info groups have found funding to be erratic and inadequate to the
tasks confronting the field; it is currently decreasing just as need is escalating. Agencies which fund
initial ideas are often not prepared to continue funding so that new methods are fully developed
with tools promulgated to the wider community. No agency provides a consistently supported
mechanism for delivering and maintaining codes. Funding for Summer School training is not
provided in a continuous manner. It is difficult to keep collaborators on board: talented computer
scientists and statisticians can readily find more lucrative and stable collaborations in other fields
such as biostatistics and bioinformatics. Program administrators are often enthusiastic advocates
of Astro/Info research, but their efforts are thwarted by resource and structural constraints beyond
their control.

4 Models From Other Disciplines
Astronomy is hardly the only discipline to experience astonishing growth in the size and com-

plexity of data sets in recent years. Two other areas experiencing similar revolutionary changes are
the biological and medical sciences, and the geosciences. They have complementary lessons to of-
fer astronomers. The typical biological scientist historically has not had the level of mathematical
and computational training of a physical scientist; accordingly, the biosciences have a long tradi-
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tion of turning to statisticians for help with their data analysis problems. In contrast, geoscientists
have comparable mathematical and computational training to astronomers, and have similarly fol-
lowed a “do-it-yourself-first” pattern throughout much of their history. But in the last decade, the
geoscience data deluge has forced geoscience to forge strong ties with information sciences, and
to develop new structures to support the growth of geostatistics and the emergence of geoinformat-
ics. Thus the biosciences provide an example of the value of long-term investment in information
sciences, while the geosciences offer lessons in how to quickly bootstrap such investments within
a large, technologically savvy scientific community.

The biological and medical sciences have a long tradition of community investment in infor-
mation science research, extending back perhaps a century. As a consequence, biostatistics has
been a stand-alone discpline for decades, with multiple journals and entire academic departments
devoted to it. Bioinformatics—focusing on large data set issues mostly arising in genomics and
molecular biology, but increasingly arising in health sciences—is much newer but is probably the
leading growth area in modern statistics. Biology research is funded by both the NSF and the
National Institutes of Health (NIH), at levels of about $600M and $28.5B (2007 numbers). The
NSF funding of biostatistics research is integrated within its biology and mathematical sciences
programs; the level of investment has proved difficult to track. As an emerging discipline, bioinfor-
matics investments are more visible. NSF currently funds bioinformatics investments via diverse
programs in four directorates: Biology (multiple programs); Computer & Information Science &
Engineering (two programs); Engineering; and Mathematical and Physical Sciences (our web site
lists the programs). This constitutes a large and diverse portfolio of support. Many programs
support multiple scales of investigation, spanning 3, 4, and 5 years. In addition, the NSF-wide
Cyber-enabled Discovery Initiative (CDI) expects to support multiple computational biology and
bioinformatics projects as it progresses.

Several of the 27 institutes comprising NIH have independent Biostatistics divisions support-
ing both intramural and grant-based biostatistics and bioinformatics research; in addition, many
general research grants include funding for biostatistics consultation. In some institutes, bioinfor-
matics has become so important that there are separate Biostatistics and Bioinformatics divisions.
A representative example for which we have a fairly complete picture is the National Institute of
Allergy and Infectious Diseases (NIAID). NIAID currently funds 30 biostatistics grants with a to-
tal investment of $8M in FY08, comprising 2% of total NIAID grant funding; it separately devoted
$1.3M to biostatistics training. NIAID supports three types of biostatistics research grants: 2-year
non-renewable Exploratory/Developmental Research Grants (typically $100k), 2-year renewable
Small Research Grants ($50k), and 3-5 year renewable grants (up to $500k or above, with ap-
proval). The NIAID training grants are long-term investments (14–20 yr as of 2009) in specific
academic institutions for training future biostatisticians, at both pre-doctoral and post-doctoral lev-
els. These grants directly fund 19 biostatistics graduate students and 3 postdocs per year. This
significant investment in training via targeted grant funding is echoed by other NIH institutes.
Other institutes also support ambitious summer schools, such as the National Heart, Lung and
Blood Institute (NHLBI) Summer Institute for Training in Biostatistics. Courses offered during
this 6-week program are developed with grant support; the 2009 solicitation anticipates awarding
7 grants totaling $1.7M for courses to be offered in 2010–2012.

In the geosciences, the primary mechanism for supporting geostatistical and geoinformatics
(geo/info) research is the NSF Collaboration in Mathematical Geosciences (CMG), a partnership
between the four NSF geoscience divisions (Earth, ocean, atmosphere, and polar science) and both
DMS and Computer & Information Science & Engineering (CISE). This program began operation
in 2002 and is considered very healthy. The program makes 15 to 28 awards per year totaling
$12M–$14M/yr. As an example, the Earth Sciences Division (EAR) CMG awards amount to 4-5%
of the EAR research budget. CMG funds interdisciplinary research, interdisciplinary post-graduate
summer training, and interdisciplinary post-doctoral research appointments.

Also of interest are community support mechanisms for information science research in these
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areas. As noted, biostatistics is a mature field; biometrics (including both biostatistics and bioin-
formatics) is the largest Section of the American Statistical Association, and there are several more
focused national and international societies for biostatisticians.

In the geosciences, significant community support has only just emerged in the last several
years. The American Geophysical Union (AGU), supporting Earth, space and planetary scientists,
formed its Earth and Space Sciences Informatics (ESSI) Focus Group in 2005 (focus groups sup-
port scientists whose work cuts across multiple AGU science sections). ESSI is “concerned with
issues of data management and analysis, large-scale computational experimentation and model-
ing, and hardware and software infrastructure needs, which ultimately provide the capability to
change data systems into knowledge systems.” Its focus is predominantly geoinformatics; it also
covers geostatistics, but geostatistics support is also strong within individual AGU sections. It
has become the fastest growing AGU focus group, and the number of geo/info abstracts at the
annual AGU meeting doubled from 2007 to 2008. The Geological Society of America (GSA) is
an older agency, supporting the professional growth of earth scientists. Among its 17 divisions is
a Geoinformatics division devoted specifically to supporting the geo/info community. Two new
geoscience journals are substantially devoted to geostatistics and geoinformatics research: Earth
Science Informatics (started in 2008 with an issue on Virtual Observatories in Geosciences) and
Geoscientific Model Development (started in 2008).

The contrast between the relative size and scope of support for Astro/Info versus that for
geo/info and bio/info is stark. The observational and theoretical astronomy specialties can boast a
level of excellence rivaling or even exceeding that of their counterparts in these disciplines. For As-
tro/Info the converse is true: it is instead a weak link in the astronomical chain of expertise whose
successes to date have been achieved despite support obstacles not present in other disciplines with
similar needs.

5 Recommendations for Improved Support of Astro/Info
The above discussion demonstrates the growing scientific need for astrostatistics and astroin-

formatics research and training during the early 21st century, combined with inadequate and de-
creasing resources provided for the tasks faced. It does not make sense that US astronomy de-
velops the finest telescopes and detectors and the most sophisticated astrophysical understanding
while neglecting the modernization of the intermediate stage of data analysis. To accomplish this
modernization, there is a critical need to develop and maintain active collaborations between as-
tronomers and information scientists, and mechanisms to propagate their advances in data analysis
and computational thinking into the broad astronomical community. Accomplishing this will be
challenging, and the recommendations for action outlined here should not be considered a final
answer. But the modest yet noteworthy achievements of Astro/Info to date, and the successes in
other disciplines, provide useful models for future development of the field.

We believe the components comprising a viable solution to the Astro/Info crisis facing astron-
omy will have these key features: (1) Research funding must involve explicit partnerships between
discipline-specific funding sources, all the way down to the level of review panels, which must be
interdisciplinary. (2) Research funding must be sustained, and take an integrated, multi-faceted
approach to supporting the variety of Astro/Info research activities. (3) There must be substantive
support for Astro/Info training of young scientists in both astronomy and the information sciences.
(4) Community support mechanisms must be created to foster communication and resource shar-
ing among Astro/Info scientists, between the Astro/Info community and its partner disciplines, and
between the Astro/Info community and funding agencies.

With these features in mind, we offer the following recommendations. We note that the total
new cost for implementing our specific research and training recommendations is a few million
dollars annually, a small fraction of annual spending in astronomy. This small investment will
have a disproportionately large impact on Astro/Info and on astronomy as a whole.
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1. Community support via AAS. The AAS should be urged to create a mechanism to of-
ficially support the growing Astro/Info community. Possible mechanisms include a Committee,
Working Group, or Interest Group on Data Sciences. An AAS Astro/Info group would help co-
ordinate communication within the Astro/Info community, and between this community and other
astronomers and funding agencies. This group should work with funding agencies to implement
the recommendations below.

2. NSF Astro/Info grant support. The NSF should be urged to quickly and permanently
reinstitute an independent, cross-disciplinary solicitation along the lines of MSPA-AST, specifi-
cally targeting information science research in astronomy, and partnering AST with both DMS and
CISE (that is, adding computer science as an additional partner). Based on the need, historical
MSPA-AST funding, and the models of other disciplines, a funding level on the order of $2M/yr
is an appropriate start.

3. NSF large project partnerships. NSF Astronomy should vigorously pursue partnerships
in support of large projects that have a significant Astro/Info component. For example, LSST
and VO should receive support from CISE and DMS in return for supporting researchers in the
information sciences.

4. NASA’s astrophysics data analysis programs. With community input, NASA should be
urged to reorganize its support of data analysis and information science research, possibly replacing
the current ADP and AISR programs with a more integrated portfolio of support for both routine
and advanced data analysis serving space-based astrophysics. Key new features we hope to see in a
revised portfolio include: (1) Support for archival data analysis where astronomy-driven informa-
tion science research is encouraged to play an equal role to the astronomical science; (2) Support
for extramural data analysis research for both operating and pre-flight missions. The current ADP
and AISR budgets are $3.7M/yr and $2.5M per 18 months (this represents 1/2 of AISR’s origi-
nally planned 2008–2009 funding). We estimate an annual budget of $6.5M as appropriate for an
integrated data analysis portfolio targeting space-based astrophysics.

5. Multi-tiered grant funding. Both NASA and NSF Astro/Info research programs should
implement explicitly multi-tiered support, with different categories of research of various duration
and levels of funding. The NIH biostatistics example described above provides a model. Long-
term funding must be included, especially targeting young researchers; the now-defunct NASA
LTSA program offers a model.

6. Information infrastructure and science. Support for Astro/Info research targeting in-
frastructure (e.g., data management and computational resource management research, including
development of astronomy-oriented parallel, grid, and cloud computing software environments)
should be separated from support from focused, science-driven Astro/Info research, either via sep-
arate programs, or via explicitly identified proposal categories within a single program.

7. An Astro/Info career path. The community and funding agencies should work together
to establish Astro/Info as a recognized career path for astronomers, so that within the decade de-
partments and centers are making permanent data analyst appointments as routinely as they now
do for observers/instrumentalists and theorists. This work should include development of infor-
mation science courses for astronomers at the undergraduate and graduate levels, and broadened
and sustained support of summer schools and cross-disciplinary workshops on advanced methods,
both to train Astro/Info researchers and to integrate Astro/Info into mainstream astronomy.

8. Data Sciences Fellowships. A 3-year interdisciplinary fellowship in astronomical data
sciences would encourage young scientists to pursue Astro/Info careers, and bring recognition to
these scientists and to the discipline. It should support both astronomy and information science
PhDs; in the latter case, it would encourage graduates who could easily find more lucrative po-
sitions elsewhere to pursue Astro/Info careers. We estimate that a rolling roster of a few fellows
could be supported for $1M/yr; the funding source should be interdisciplinary.

9. Program administration. Interdisciplinary programs are especially challenging to admin-
ister. Any reorganization of funding to better support Astro/Info should include a fresh look at the
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programmatic resources required to enable administrators to effectively run complex programs.
The task of implementing support sufficient to the needs and promise of Astro/Info research is

complex; it may warrant further study by a dedicated panel. But the need for improved Astro/Info
support is urgent in key areas of our discipline, and concrete action should not be delayed.
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