The High Impact of Astronomical Data Archives

Richard L. White (MAST/STScI), Alberto Accomazzi (ADS/CfA), G. Bruce Berriman (IPAC/Caltech), Giuseppina Fabbiano (Chandra/CfA), Barry F. Madore (IPAC/NED/OCIW), Joseph M. Mazzarella (IPAC/Caltech), Arnold Rots (Chandra/CfA), Alan P. Smale (HEASARC/GSFC), Lisa Storrie-Lombardi (SSC/Caltech), Sherry Winkelman (Chandra/CfA)

Executive Summary

Archives are widely recognized as a valuable resource for astronomy, but statistics on their use indicates they are even more important than most astronomers realize. Obviously much of the science from survey projects such as SDSS relies on the archive. Perhaps more surprisingly, archival data are also a major contributor to the science from targeted, PI-driven missions such as HST, Chandra, Spitzer and the ground-based observatories. Archival research currently accounts for half of the ~1200 Hubble and Chandra science papers published each year, and the use of the archive continues to increase. *The archival data products are, in the long term, as important as the PI science programs.*

It is vital to recognize the large impact archives can have on the science generated by missions and observatories. The value of the archive should be an important factor in the establishment of new projects. Future missions and observatories should not only budget adequate resources to support a robust archive, but they also should consider the effects of mission design and operations decisions on the archive. Additional funding both for archive users and archive centers – particularly with an eye to enabling cross-archive, multiwavelength science – is a relatively inexpensive way to increase the science output from our major investments in large projects.

How Important Are Archives?

Few would dispute the statement that archives can be a useful product for most astronomical missions and projects. But how important are they? Should we be putting more resources into improving our archives? Or should we focus our efforts (and budgets) on other operational and development activities and be satisfied with an archive that simply captures the results of those efforts?

Some current and planned science projects are built with a focus on the archive as the primary product. For example, the value of the Sloan Digital Sky Survey (SDSS) lies almost entirely in its creation a large homogeneous database that is suitable for a vast array of science projects, from studies of solar system asteroid families to the discovery of the most distant quasars in the universe. The SDSS project made many decisions about the telescope, instruments, operations, and data processing with an awareness of how those choices would affect the ultimate data archive. The science team relies on the archive, and the tools developed for the team are also made available to the community. The result is a highly successful project that has spawned an impressive quantity of archival research (more than 2200 refereed papers, most of which are authored by people outside the SDSS collaboration). The success of SDSS has led it to serve as a model for similar current and future projects such as GALEX and LSST.

Other types of projects are not obviously archive-driven at all. General-purpose observatories such as NOAO, Gemini, the VLA and NASA's Great Observatories (HST, Chandra, Spitzer) have

heterogeneous science programs that are entirely defined by PI-led proposals. The science goals, instrument configurations, and resulting data characteristics vary widely.

Is the archive really used for such missions, or is its main role merely to enhance PI science by encouraging timely publication of (soon to be public) data? The answer to this question can affect many decisions about instrument design, data processing, and observatory operations. How much effort should be expended on creating standard calibrations and generating science-ready data products? Is work toward producing a more usable archive sufficiently important to justify reducing the effort on some other aspect of observatory operations?

The Science Impact of the Hubble and Chandra Archives

To shed light on these issues we have analyzed the impact of science using the HST and Chandra archives. We choose HST and Chandra not to make a point about those particular missions but because they are good exemplars: general-purpose observatories, driven by PI-led programs, for which we have very good statistics on publications and citations. These statistics are the best objective measure of the science impact of the mission.

The HST Archive

Since the HST launch in 1990, the STScI has maintained a database of refereed papers that utilized HST data. The database links publications in journals to the proposal that supplied the data. We have divided the data use in these papers into archival and non-archival using a conservative definition of archival data: data use is considered archival if none of the coauthors on the paper were co-investigators on the HST proposal that originally acquired the data. Even a single overlapping author/co-I leads to the data use being classified as non-archival. Clearly this does classify some truly archival uses of data as non-archival, because it is possible for scientists on the original proposal to reuse the data for new science many years after the observation.¹ So we expect that this definition slightly underestimates the number of archival papers.

A single paper may use data from several different HST proposals. This leads to classification of the papers into three groups: *Totally Archival* (all data are archival); *Non-archival* (none of the data are archival); and *Partially Archival* (data from multiple proposals were used, with some being archival and some non-archival).

Figure 1 shows the resulting publication rate for Hubble data papers from 1995 through 2008. Since 1997 the rate of non-archival PI science publications has remained steady (presumably because they are limited by the available telescope time). But over the entire 14-year period, there has been a continuous increase in the number of archival science papers. For the past 3 years (2006–2008), the number of totally archival papers has exceeded the number of non-archival papers.

¹ A good example of that is the Riess et al. (2001, ApJ, 560, 49) discovery of a z=1.7 supernova in the HDF, which is classified as non-archival because some coauthors were on the original HDF NICMOS proposals that serendipitously observed the SN.

Figure 1: Number of annual publications using Hubble Telescope data. The publications have been divided into non-archival papers written by the original investigators (blue), totally archival publications not involving none of the original proposers (yellow), and papers that include data from multiple proposals with some being archival and some not (red). The number of archival papers has exceeded the number of PI-led papers since 2006.

Figure 2: Highly cited HST publications between 1997 and 2000. All 71 papers with more than 150 citations (as of March 2009) are included in the sample. Note the *y*-axis is logarithmic. As in Figure 1, the publications have been divided into non-archival (blue), totally archival (yellow), and partially archival (red) depending on whether the original proposers were authors on the paper. Totally archival papers make up 37% of the highly cited sample, which is slightly above the rate expected based on their frequency of publication during this period.

Analysis of the impact of archival and non-archival papers, as measured by citations, shows that archival papers have an impact similar to non-archival publications. They are not merely cleaning up the scraps left behind after the PI science was completed. Figure 2 shows the number of citations for the most highly cited HST papers published between 1997 and 2000. This time interval was chosen because it has a significant number of archival papers and is far enough in the past for papers to have accumulated a substantial number of citations. The complete list of papers is included in Appendix 1. For the highly cited papers, 37% are totally archival, 15% are partially archival, and 48% are non-archival. For comparison, the corresponding fractions for all HST papers published during 1997–2000 were 33%, 11%, and 56%, respectively. Thus archival papers are represented among the highly cited papers at the frequency expected based on their publication rates. Summing the citations in the different categories shows that totally, partially, and non-archival papers account for 23%, 28% and 49% respectively of the citations. These numbers are obviously skewed by the top-cited partially archival paper but nonetheless represent a very respectable showing for archival research. It is clear that archival papers are very well represented among even the most highly cited HST mission papers. *Archival science is high-impact science*.

Finally, the usage of the HST archive continues to increase. The growing number of archive publications is apparent in Figure 1: between 2004 and 2008 the annual number of totally archival publications increased 30% (7% per year). Over the same period, the number of archive searches increased by 70%, with searches through VO-compatible interfaces now making a substantial contribution. All indications are that *archival research will be even more dominant in the years to come*.

The Chandra Archive

The Chandra X-ray Observatory, launched in 1999, has a shorter history than Hubble but shows publication and citation trends that are completely consistent with those described above. The Chandra archive also tracks publications and citations associated with their data, and we have similarly divided those publications into non-archival, partially archival, and totally archival categories. The definitions of these categories are somewhat different than those used for Hubble: dataset usage is identified as archival as long as the PI and prime observer are not coauthors (so publications with Co-Is but not the PI are counted as archival), and data papers identified as follow-up science are assigned to the partially archival category. These differences have some effect on the counts in the categories, but for the great majority of papers they would result in the same classification as used for HST.

Figure 3 shows the publication rate for Chandra data papers from 2000 through 2008. The similarity to the HST history (Fig. 1) is striking, with recent Chandra publications being even more heavily dominated by archival science. Obviously the Hubble archival experience is not an anomaly. As Chandra approaches its tenth anniversary, it is clear that its long term its archival science productivity will exceed that of the PI programs.

The analysis of highly cited Chandra papers is shown in Figure 4. The time window chosen, 2001–2003, is necessarily more recent than that used for HST. The selected papers are listed in Appendix 2. For the highly cited papers, 27% are totally archival, 19% are partially archival, and 54% are non-archival. For comparison, the corresponding fractions for all Chandra papers published during 2001–2003 were 34%, 12%, and 54%, respectively. Note that at the beginning of this period, Chandra had been in orbit only 1.5 years, so the archive held very little non-proprietary data; consequently there were relatively few archival papers in 2001 (Fig. 1). Nonetheless, for Chandra as for HST, archival papers are very common among the observatory's highest impact papers.

Figure 3: Number of annual publications using Chandra Observatory data. As for HST, the publications have been divided into non-archival (blue), totally archival (yellow), and partially archival papers (red). The definition of the "Totally Archival" category is slightly less conservative than the one used for the HST plot, but the trend is clear: archival science dominates PI-led science for Chandra as well.

Figure 4: Highly cited Chandra publications between 2001 and 2003. All 48 papers with more than 125 citations (as of March 2009) are included in the sample. Note the *y*-axis is logarithmic. As in Figure 3, the publications have been divided into non-archival (blue), totally archival (yellow), and partially archival (red). Totally archival papers make up 27% of the highly cited sample, which is consistent with their 34% frequency among all publications from this period.

Summary

This is a remarkable result. Hubble and Chandra remain cutting-edge facilities that are heavily oversubscribed with new science proposals, and few of their observing programs have been created primarily to facilitate archive science. (The principal exceptions are the Hubble Deep Fields, which were born as archival products.) Nonetheless, fully half of the science with Hubble and Chandra now relies on archival data. This can be attributed both to well-established infrastructures for supporting the archives and to the sheer longevity of these missions, which each year add one year's worth of new data but already hold one to two decades of existing data. All the trends indicate that archival science will become increasingly dominant as time passes. The bottom line: *Even for missions that are based essentially entirely on a heterogeneous collection of PI proposals, archival research dominates the PI-led science for the observatory*.

The Science Impact of Data Integration Services

Services that integrate information from the astronomical literature and from observatory and sky survey archives are also important components of the framework of modern astrophysics research. As an example, the NASA/IPAC Extragalactic Database (NED) provides data from hundreds of large sky surveys and tens of thousands of research publications spanning the spectrum from gamma rays through radio frequencies. As of March 2009, NED provides information for 163 million objects with connections to the literature via the ADS and to relevant data centers around the world. NED also provides services such as name-to-coordinate resolution and access to object data that are widely used by other archives, including observation planning tools such as SPOT (Spitzer) and APT (HST) and image analysis tools such as Aladin (CDS

As for the mission archives, the science impact of NED and other integrative services can be measured via citations and acknowledgements in the astrophysics literature. Figure 5 shows the annual citations and acknowledgments to NED from 1991 through 2008. Over the period 2004 through 2008, NED was cited in an average of 470 articles per year, which is about 18% of all journal articles on extragalactic topics.

Figure 5: Annual acknowledgments to NED in the literature from 1991 through 2008.

Recommendations to Maximize the Impact of Archival Science

Archival science is a relatively inexpensive way to increase the science output of large missions and projects. Archives are obviously the principal focus for surveys such as SDSS, but the statistics above demonstrate that they are also of key (and increasing) importance for pointed missions such as Hubble, Chandra, and, presumably, Spitzer and the national observatories.

Maximizing the impact of archival science should be an explicit goal of missions and projects over the coming decade.

1. Ensure sufficient funding and support for researchers making use of the archives.

Future projects such as ALMA and LSST will require greater user resources for effective utilization of the trove of data they generate. A broad-based community science program using these data is likely to require additional funding both for archive users and for the archive centers. (Note that the level of funding required is invariably modest compared with the cost of acquiring the data.) In addition to funding the hardware and software required for data analysis, resources are needed to train the astronomical community in the use of archives. Astronomy departments should be provided the means and incentive to put archival science into their core graduate curricula, and the national facilities should provide a continuing series of summer schools to educate the next generation of astronomers. These will be similar to the successful NVO summer schools but will include a broader range of topics including, for example, the use of more powerful statistical techniques and packages.

Multiwavelength studies that draw data from multiple archives are an increasingly important theme in astronomy. The Virtual Astrophysical Observatory will provide the tools and protocols to facilitate this research, but fully utilizing these capabilities will require additional resources. The funding process for archival research should support the needs of cross-archive research, both for the scientists and for the archive centers (including integrative archive services such as ADS, NED, Vizier, etc.).

2. Ensure that current and future observatories and missions make their data available in science-ready form and with appropriate documentation.

The importance of archival science implies that establishing an archive should be a primary goal of new missions and observatories. In fact, we believe that the ultimate value of the archive should be an important factor in the establishment of new projects.

Existing projects should continue their efforts to improve their archives. The space-based observatories have generally made good progress in creating user-friendly archives containing their datasets. This is at least partly due to the close control and tracking of the commands that are sent to orbiting telescopes, which leads to the capture of detailed metadata describing the observer's intent and execution of the program. Ground-based observatories have a less-controlled environment, which can make generating high-level data products more difficult (though this is changing with the advent of queue scheduling). But it is very likely that with improved functionality and higher level data products, the research done from ground-based archives could be greatly increased to a level commensurate with that of PI programs. The effort required to create data processing pipelines that generate high quality, science-ready data products will likely exceed the resources currently available at the archive centers, but our experience is that an investment in this area will be amply repaid in science. To this end it would be helpful to have projects focused solely on improving the archives, with independent funding that is not subject to redirection to other observatory priorities.

As the archive data holdings and usage both increase in volume, the archive centers will need to upgrade their infrastructure. While Moore's law will solve many problems, some important aspects (such as network bandwidth) are likely to require additional investments to avoid becoming a bottleneck for researchers.

3. The fact that a good fraction of all science from missions will ultimately be archival should be taken into consideration in all phases of mission/observatory design and operations. The archival data products are, in the long term, as important as the PI science programs!

Future missions should not only budget adequate resources to support a robust archive, but they also should consider the effects of mission design decisions on the archive. Even missions that focus on a singular prime science goal (e.g., JDEM's characterization of the physics of dark matter) will potentially generate a body of data that ultimately has an impact on science comparable to the prime science. The long-term archival impact of decisions should be an important factor that is weighed in all phases of the mission design and operations. This same trade-off is made in allocating telescope time for general-purpose observatories, and many observatories have already recognized the value of collecting the best archival data through the establishment of treasury, legacy, and other similar large observing programs.

Note that better archival data can also improve the prime mission science. A JDEM archival research program studying galaxies and large scale structure may well turn up improved algorithms for measuring dark matter parameters, e.g., by separating galaxies by morphological class. Mission decisions that make the archive less useful reduce the chances of the feedback that is the hallmark of scientific inquiry.

Appendix 1: Most Highly Cited HST Publications from 1997–2000

Below are listed the 71 HST papers published between 1997 and 2000 that were most highly cited as of March 2009. All papers with 150 or more citations are listed. The first column gives the number of citations, the second the type of paper (totally archival, partially archival, or not archival) and the remainder the reference. These are the data used for Figure 2.

#Cite	Archival?	Bibcode	Author	Title
3701	Part	1999ApJ517565P	Perlmutter, S.	Measurements of Omega and Lambda from 42 High-Redshift Su
3643	Not	1998AJ116.1009R	Riess, A. G.	Observational Evidence from Supernovae for an Acceleratin
1284	Part	1998AJ115.2285M	Magorrian, J.	The Demography of Massive Dark Objects in Galaxy Centers
1252	Not	2000ApJ539L13G	Gebhardt, K.	A Relationship between Nuclear Black Hole Mass and Galaxy
793	Not	1998Natur.39151P	Perlmutter, S.	Discovery of a Supernova Explosion at Half the Age of the
633	Total	1997ApJ483565P	Perlmutter, S.	Measurements of the Cosmological Parameters Omega and Lam
522	Part	199/ApJ4905//D	Dressler, A.	Evolution since Z = 0.5 of the Morphology-Density Relatio
405	Not	199/AJ114.1//1F	Carpavich P M	Supernova Limits on the Cosmic Equation of State
385	Total	1998ApJ492461S	Stanford, S. A.	The Evolution of Early-Type Galaxies in Distant Clusters
371	Total	1997ApJ481673L	Lowenthal, J. D.	Keck Spectroscopy of Redshift Z approximately 3 Galaxies
371	Not	1997ApJ486L11C	Connolly, A. J.	The evolution of the global star formation history as mea
363	Not	1998ApJ493L53G	Garnavich, P. M.	Constraints on Cosmological Models from Hubble Space Tele
328	Not	1999AJ118.1551W	Whitmore, B. C.	The Luminosity Function of Young Star Clusters in `the An
321	Not	1997ApJ483582E	Ellis, R. S.	The homogeneity of spheroidal populations in distant clus
320	Not	1997ApJ479642B	Bahcall, J. N.	Hubble Space Telescope images of a sample of 20 nearby lu
299	Total	199/ApJ4/5469Z	Zneng, W.	A composite HST spectrum of quasars
292	Total	1999ApJ351334F	Fernandez-Soto, A.	A New Catalog of Photometric Redshifts in the Hubble Deep
268	Not	1998ApJ508539P	Pettini, M.	Infrared Observations of Nebular Emission Lines from Gala
266	Total	1999ApJ52164M	Meurer, G. R.	Dust Absorption and the Ultraviolet Luminosity Density at
260	Total	1999ApJ511639I	Izotov, Y. I.	Heavy-Element Abundances in Blue Compact Galaxies
254	Not	1998ApJ493180M	Massey, P.	Star Formation in R136: a Cluster of O3 Stars Revealed by
241	Not	1998ApJ493222M	Meyer, D. M.	The Definitive Abundance of Interstellar Oxygen
240	Total	1998MNRAS.2985831	Ivison, R.J.	A Hyperluminous Galaxy at z = 2.8 Found in a Deep Submill
236	Part	1997AJ11454M	Meurer, G. R.	The panchromatic starburst intensity limit at low and hig
229	Not	1999MNRAS.3083//M	McLure, R. J.	A Comparative HST Imaging Study of the Host Galaxies of R
224	Total	1997ARA&A	van Dokkum P G	Luminosity Evolution of Early-Type Galaxies to $z = 0.83$.
215	Not	1997ApJ489579M	Macchetto, F.	The supermassive black hole of M87 and the kinematics of
212	Not	1998ApJ497188C	Couch, W. J.	Morphological Studies of the Galaxy Populations in Distan
209	Total	2000PASP112.1383D	Dolphin, A. E.	WFPC2 Stellar Photometry with HSTPHOT
208	Total	1997AJ1131S	Sawicki, M. J.	Evolution of the galaxy population based on photometric r
205	Total	2000AJ119.2092B	Barger, A. J.	Mapping the Evolution of High-Redshift Dusty Galaxies wit
201	Not	1998AJ116.1357S	Sahai, R.	Multipolar Bubbles and Jets in Low-Excitation Planetary N
200	Not	1998ApJ50075L	Lilly, S.	Hubble Space Telescope Imaging of the CFRS and LDSS Redsh
190	Total	1999ApJ510/50C	Dettini M	Intrinsic Absorption Lines in Seylert 1 Galaxies. 1. Ultr
196	Not	1997A&A321733L	Le Brun, V.	The nature of intermediate-redshift damped Ly alpha absor
194	Not	1999ApJ525750F	Figer, D. F.	Hubble Space Telescope/NICMOS Observations of Massive Ste
194	Not	2000AJ119991S	Scoville, N. Z.	NICMOS Imaging of Infrared-Luminous Galaxies
190	Not	1997ApJ486L75F	Franx, M.	A pair of lensed galaxies at z=4.92 in the field of CL 13
190	Not	2000ApJ529786M	Mould, J. R.	The Hubble Space Telescope Key Project on the Extragalact
190	Part	2000ApJS1301R	Rao, S. M.	Discovery of Damped Ly alpha Systems at Redshits Less Tha
184	NOT	1008Apt 5031 1315	Le revre, U.	Hubble Space to M31 with the Hubble Space Telescope and HIPPA
180	Not	1997Ap.T 482 114H	Heckman, T. M.	A powerful nuclear starburst in the Sevfert galaxy Markar
179	Not	1998ApJ499758J	Johnstone, D.	Photoevaporation of Disks and Clumps by Nearby Massive St
176	Not	1997ApJ484L25R	Rich, R. M.	Discovery of extended blue horizontal branches in two met
176	Part	1998ApJ499112B	Brinchmann, J.	Hubble Space Telescope Imaging of the CFRS and LDSS Redsh
176	Not	2000ApJ54195V	van Dokkum, P. G.	Hubble Space Telescope Photometry and Keck Spectroscopy o
176	Total	2000PASP112.1397D	Dolphin, A. E.	The Charge-Transfer Efficiency and Calibration of WFPC2
174	NOT Part	2000ApJ540.1016L	Lunman, K. L.	The Initial Mass Function of Low-Mass Stars and Brown Dwa
172	Total	1997Ap.T 489 559G	Guzman, R.	The Nature of Compact Galaxies in the Hubble Deep Field
169	Total	1997ApJ482913G	Gould, A.	M dwarfs from Hubble Space Telescope star counts. III. Th
169	Not	1998ApJ498181K	Kennicutt, R. C.	The Hubble Space Telescope Key Project on the Extragalact
163	Not	2000ApJ534L1T	Tripp, T. M.	Intervening O VI Quasar Absorption Systems at Low Redshif
162	Total	1997A&A327.1054B	Baraffe, I.	Evolutionary models for metal-poor low-mass stars. Lower
160	Not	1997AJ113.2246R	Reid, I. N.	Low-mass binaries and the stellar luminosity function
159	Part	2000MNRAS.312L9M	Madau, P.	Deep Galaxy Counts, Extragalactic Background Light and th
156	Part	2000AJ 110 2010B	Rally J	RAGIO EMISSION FION GALAXIES IN THE HUDDLE Deep Fleid
154	Not	1999AJ117.1490D	Padgett, D. T.	Hubble Space Telescope/NICMOS Imaging of Disks and Envelo
154	Total	1999ApJ519L13F	Fruchter, A. S.	Hubble Space Telescope and Palomar Imaging of GRB 990123:
154	Total	1999ApJ527L81Z	Zhang, Q.	The Mass Function of Young Star Clusters in the `Antennae
153	Total	2000ApJ528637B	Brandt, W. N.	On the Nature of Soft X-Ray Weak Quasi-Stellar Objects
152	Not	1998AJ11668C	Carollo, C. M.	Spiral Galaxies with WFPC2. II. The Nuclear Properties of
151	Total	1997ApJ479L.121V	Vogt, N. P.	Optical rotation curves of distant field galaxies: sub-L[
151	Total	1999A&A34977C	Chiaberge, M.	The HST View of FR I Radio Galaxies: Evidence for Non-the
150	Total	1998AJ115.1319C	COW1e, L. L.	Hign-z Lyaipna Emitters. 1. A Blank-Field Search for Obje

Appendix 2: Most Highly Cited Chandra Publications from 2001–2003

Below are listed the 48 Chandra papers published between 2001 and 2003 that were most highly cited as of March 2009. All papers with 125 or more citations are listed. The first column gives the number of citations, the second the type of paper (totally archival, partially archival, or not archival) and the remainder the reference. These are the data used for Figure 4.

#Cite	Archival?	Bibcode	Author	Title
391	Not	2003ApJ598886U	Ueda, Y.	Cosmological Evolution of the Hard X-Ray Active Galactic
342	Not	2003AJ126539A	Alexander, D. M.	The Chandra Deep Field North Survey. XIII. 2 Ms Point-Sou
328	Not	2001ApJ551624G	Giacconi, R.	First Results from the X-Ray and Optical Survey of the Ch
307	Not	2002ApJS139369G	Giacconi, R.	Chandra Deep Field South: The 1 Ms Catalog
263	Not	2001AJ122.2810B	Brandt, W. N.	The Chandra Deep Field North Survey. V. 1 Ms Source Catalogs
255	Not	2002Apj566667R	Rosati, P.	The Chandra Deep Field-South: The 1 Million Second Exposure
239	Not	2003ApJ591891B	Baganoff, F. K.	Chandra X-Ray Spectroscopic Imaging of Sagittarius A* and
221	Not	2003MNRAS.344L43F	Fabian, A. C.	A deep Chandra observation of the Perseus cluster: shocks
217	Not	2001Natur.41345B	Baganoff, F. K.	Rapid X-ray flaring from the direction of the supermassiv
211	Part	2002A&A384848E	Elbaz, D.	The bulk of the cosmic infrared background resolved by IS
210	Total	2001ApJ557546D	David, L. P.	A High-Resolution Study of the Hydra A Cluster with Chand
209	Total	2001A&A366407G	Gilli, R.	Testing current synthesis models of the X-ray background
204	Not	2003AJ126632B	Barger, A. J.	Optical and Infrared Properties of the 2 Ms Chandra Deep
203	Part	2003MNRAS.34460G	Gallo, E.	A universal radio-X-ray correlation in low/hard state bla
197	Not	2001AJ121662B	Barger, A. J.	The Nature of the Hard X-Ray Background Sources: Optical,
196	Not	2001ApJ551160V	Vikhlinin, A.	A Moving Cold Front in the Intergalactic Medium of A3667
190	Total	2002MNRAS.3371I	Ivison, R. J.	Deep radio imaging of the SCUBA 8-mJy survey fields: subm
178	Not	2002ApJ571218N	Norman, C.	A Classic Type 2 QSO
178	Total	2003MNRAS.339793G	Grimm, HJ.	High-mass X-ray binaries as a star formation rate indicat
175	Total	2003A&A39939R	Ranalli, P.	The 2-10 keV luminosity as a Star Formation Rate indicator
174	Not	2001ApJ554742H	Hornschemeier, A. E.	The Chandra Deep Survey of the Hubble Deep Field-North Ar
172	Not	2001ApJ558L15B	Blanton, E. L.	Chandra Observation of the Radio Source/X-Ray Gas Interac
172	Part	2003ApJ595614W	Wyithe, J. S. B.	Self-regulated Growth of Supermassive Black Holes in Gala
171	Part	2001MNRAS.328L37A	Allen, S. W.	The X-ray virial relations for relaxed lensing clusters o
164	Part	2001ApJ56113B	Borgani, S.	Measuring Omega_m with the ROSAT Deep Cluster Survey
160	Not	2001ApJ56242T	Tozzi, P.	New Results from the X-Ray and Optical Survey of the Chan
156	Total	2001MNRAS.321L29K	Kaaret, P.	Chandra High-Resolution Camera Observations of the lumino
154	Total	2002AJ124.1839B	Barger, A. J.	X-Ray, Optical, and Infrared Imaging and Spectral Propert
154	NOT	2002ApJ56/L2/M	Markevitch, M.	A Textbook Example of a Bow Shock in the Merging Galaxy C
151	Not	2001ApJ554.1055F	Fabbiano, G.	V Day emitting Young Storg in the Orion Nobula
151	NOL Dart	2002ApJ 374 230F	Allon S W	Cosmological constraints from the V ray gas mass fraction
1/0	Not	2001Apt 556 2904	Holfand D I	Vola Dulcar and Its Sunghrotron Nobula
140	Not	2001Ap0530500H	Martin C L	The Metal Content of Dwarf Starburgt Winds, Pecults from
146	Total	2002Apo	Fiore F	The HELLAS2XMM survey IV Optical identifications and th
143	Total	2001Ap.T 547L 25M	Matsumoto H	Discovery of a Luminous Variable Off-Center Source in t
143	Part	2002ApJ574643K	Kaspi, S.	The Ionized Gas and Nuclear Environment in NGC 3783. I. T
143	Total	2003PhB 377 389B	Revnolds, C. S.	Fluorescent iron lines as a probe of astrophysical black
141	Part	2001Apt 5491 51H	Ho. L. C.	Detection of Nuclear X-Ray Sources in Nearby Galaxies wit
141	Not	2001ApJ562L.149M	McNamara, B. R.	Discovery of Ghost Cavities in the X-Ray Atmosphere of Ab
140	Part	2002ApJ575732K	Kinkhabwala, A.	XMM-Newton Reflection Grating Spectrometer Observations o
138	Not	2003ApJ582L15K	Komossa, S.	Discovery of a Binary Active Galactic Nucleus in the Ultr
137	Total	2002A&A382804B	Bohringer, H.	The new emerging model for the structure of cooling cores
137	Total	2003ApJ588696M	Moretti, A.	The Resolved Fraction of the Cosmic X-Ray Background
136	Not	2002ApJ567434K	Kastner, J. H.	Evidence for Accretion: High-Resolution X-Ray Spectroscop
132	Not	2001AJ122.2156A	Alexander, D. M.	The Chandra Deep Field North Survey. VI. The Nature of th
129	Not	2001Sci292.2290G	Grindlay, J. E.	High-Resolution X-ray Imaging of a Globular Cluster Core:
126	Total	2002A&A391923G	Grimm, HJ.	The Milky Way in X-rays for an outside observer. Log(N)-L