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Testing Gravitational Time Delay Predictions of General Relativity
Introduction: Testing general relativity (GR) more fully is one of the important scientific opportunities for new missions and new observation programs in the next decade.  One valuable type of test that was pointed out by Shapiro in 1964 is measurement of the relativistic time delay for electromagnetic waves passing near a massive body like the Sun.  The extra delay for two-way measurements from Earth to a spacecraft passing behind the Sun can be more than 200 microseconds.  The deviations from the predictions of general relativity can be expressed in terms of the Parameterized Post-Newtonian (PPN) formulation of gravitational theory.  In this formulation, the main contribution to the time delay is proportional to 
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 is a measure of the curvature of space-time, and is exactly 1 in GR.


Historically, the first accurate measurements of the gravitational time delay were made using microwave range measurements to the Mariner 9 spacecraft orbiting around Mars and to the Viking Orbiters and Landers.  Recently, a measurement of 
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 accuracy was made during the Cassini mission.[1]  The time derivative of the time delay was measured from Doppler shifts in microwave signals sent from Earth to a transponder on the spacecraft and back.  Great care was taken to minimize spurious effects due to the Earth's atmosphere and to the interplanetary electron density.  Further improvements in the accuracy for gamma to roughly 
[image: image6.wmf]6

110

-

´

 are expected from two missions of the European Space Agency (ESA):  The GAIA astrometric mission, which will measure the gravitational deflection of light rays by the Sun, and the BepiColombo mission to Mercury, which will make improved measurements of the solar time delay.


A number of proposals for further major improvements in the accuracy of gravitational time delay measurements have been made.  Some of these have involved measurements from the International Space Station.  In 2005, an additional proposal was made for measurements between a spacecraft near the L1 point of the Earth-Sun system to a transponder spacecraft that would pass behind the Sun.[2]   This proposal was updated recently to include the use of extremely stable new clocks based on optical transitions in cooled atoms or ions.[3]   It will be used in this paper as a reference mission to provide an example of the type of approach that would be needed to reach an accuracy of about 
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Science Goals:  The major science goal for the next decade that we recommend
for consideration is the following:

   
In view of the well-known lack of a theory that connects general 
   
relativity with quantum theory, improve high-accuracy tests of the 
   
predictions of gravitational theory.

As discussed in the Introduction, one approach that would give about two orders of magnitude improvement in tests of general relativity is through improved gravitational time delay measurements.  However, other improvements in earlier tests and completely new types of tests are expected to occur during the next decade also.  Recent increases in the accuracy for lunar laser range measurements will lead to substantially improved accuracy in tests of Einstein's Strong Equivalence Principle beyond the present level of  
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.  And, ground-based gravitational wave observations of mergers of black hole binaries are expected to provide detailed tests of the dynamical predictions of general relativity under very high field conditions.  In addition, soon after the next decade, gravitational wave observations in space hopefully will give even more accurate tests involving very massive black holes like the one at the center of our galaxy.


Despite the other attractive approaches, there is a strong reason to believe that highly accurate measurements of the gravitational time delay may be the most promising method for detecting deviations from general relativity. Basically, many alternatives to general relativity involve additional scalar fields.  Studies of the evolution of scalar fields in the matter-dominated era of the universe indicate that the universe’s expansion tends to drive the scalar fields toward a state in which the scalar-tensor theory is only slightly different from GR.   Some scalar-tensor extensions of GR predict deviations from general relativity in the range of 
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[4, 5].  Improved information about 
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 would provide important insight into the evolution of the universe and directly limit the range of applicability of alternative gravitational theories
Description of the reference mission orbits and predicted time delay:  For the reference mission, one spacecraft (S1) containing a highly stable optical clock would be placed in an orbit around the L1 point, about 1.5 million km from the Earth in the direction of the Sun.  The second spacecraft (S2) would be placed in a 2 year period orbit in the ecliptic plane, with an eccentricity of 0.37.  S2 would pass through superior solar conjunction, as seen from L1, about one year after launch and 2 and 4 years thereafter.  Both spacecraft would have carefully designed drag-free systems to nearly eliminate the effects of spurious non-gravitational forces on them.  A measurement of  
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 could be carried out by observing the time delay of laser signals exchanged between two spacecraft when the line of sight passes near the sun’s limb.  Atmospheric effects would be absent.   Also, with a 2 yr orbit period for the distance satellite S2, at aphelion the spacecraft temperature will not change much during an 8 day observing period.  By adjusting the phase of the S2 orbit with respect to the earth, the aphelion of the S2 orbit can be made to occur during the measurements; the range rate then becomes very close to zero, and the orbit determination problem is much reduced.


The crucial measurements of time delay occur within a few days of superior conjunction and are primarily characterized by a logarithmic dependence on the distance of closest approach of the light to the mass source.  The predicted gravitational time delay due to a non-rotating mass source (here
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 of the endpoints of the photon, and the elongation angle 
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 between the radius vectors from the source to the endpoints, is [6]
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where 
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 is the geometric distance between the endpoints in isotropic coordinates and 
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 are PPN parameters measuring the nonlinearity of the time-time and space-space components of the metric tensor. In GR, 
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  The time delay in the above equation is expressed in terms of observable quantities, or quantities that can be obtained from orbit determination programs, and does not involve the unknown impact parameter or distance of closest approach.  The non-linear terms are a few nanoseconds so are significant, but do not have to be estimated with great accuracy. Both the second-order terms are enhanced near superior conjunction when the elongation angle 
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 comes close to
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.  However Eq. (1) is only applicable if 
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 by enough so that the line of sight does not pass through the sun.  The time delay after launch is plotted in Figure 1.
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Figure 1.  Round-trip time delay of light as a function of time elapsed after launch.  The logarithmic dependence of the delay gives a unique time signature. The region within 0.75 days of conjunction has been excluded due to occultation by the sun.
We have also estimated the time delay due to the solar quadrupole moment.  Such contributions are controlled by the parameter
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where
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, R is the sun’s radius,  and 
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is the distance of closest approach.  There is a complicated dependence of this delay on the orientation of the sun’s rotation axis with respect to the photon path, but the net effect is only a few ps and can be estimated with sufficient accuracy that it will not contribute significantly to the error budget.

The measurements will be made by transmitting a cw laser beam from S1 to S2, phase locking the laser signal from the transponder on the distant spacecraft to the received beam, and then recording the relative phase of the received beam back at S1 with respect to its own laser as a function of time.  With 20 cm diameter telescopes, and given the round-trip travel time of about 3000 s, the received signal would be roughly 1000 counts/s for 1 W of transmitted power.  
This is a weak signal, but it is strong enough so that the chances of a cycle slip should be very small, provided that the laser in S2 is well stabilized.  If we consider the round-trip delay times 
tdelay to be the observable, then the change in delay from 0.75 days to 4 days on either side of conjunction is about 64 microseconds.
Signal-to-Noise Analysis:  We estimate the final uncertainty that can be attained in this experiment on the basis of the Optimal Wiener filter, which takes advantage of the known time signature of the signal and includes the expected noise sources.[7]   For simplicity, the distance between the spacecraft is assumed to be constant except for the gravitational time delay.  The time signature of 
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 is taken to be represented by the logarithmic function
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 (a short time interval during occultation is excluded), and for the proposed experiment 
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  The rate at which the line of sight to the distant spacecraft passes across the sun is R = 1.9 solar radii per day. 

Let g(f) be the Fourier transform of g(t) over the time of the measurements.  Then the square of the signal-to-noise ratio is given by
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where 
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and the factor of 2 comes from time symmetry of the time-delay signal.  Here we use a one-sided Fourier transform, in which negative frequencies are folded into positive frequencies.  The mean value M is



[image: image41.wmf]2211

21

(ln()ln()

1.

tRttRt

M

tt

-

=-

-


(6)
For example, for the case where the time interval of measurements extends from 0.75 days to 4 days, Figure 2 plots the quantity 
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   When combined with estimates of the spectral density of the noise, the function gives us the signal to noise ratio according to Eq. (4) above.  If the noise has a constant spectral density, only about 5% of the integral in Eq. (4) comes from frequencies below 1 microhertz, where the power spectral density of acceleration noise is expected to increase at lower frequencies.
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Figure 2.  Plot of the function 
[image: image44.wmf]22

()/

gfB

 for frequencies up to 0.01 mHz, for a
typical set of measurement parameters.

S1 spacecraft clock:  The major requirement for the reference mission is to fly an optical clock on S1 that has very high stability over a period of at least 8 days around superior conjunction.  The nominal design goal for the mission is to achieve a fractional frequency noise power spectral density amplitude of 
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 from 1 Hz down to at least 
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 Hz. (This is approximately equivalent to an Allan deviation of 
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 for periods,  , from 1 second to up to 
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A leading candidate for the optical clock is a Ytterbium positive ion clock based on a single cooled Yb+ ion in a trap.  The clock transition wavelength is 435 nm. Work on this type of clock has been going on in several laboratories.  The projected spectral density amplitude is about 
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 over the necessary frequency range [8].  An advantage of the Yb+ clock is that only low power lasers are required.  However, substantial development is needed to show that such lasers can be space qualified.  Possible alternate choices include trapped ion clocks based on Sr+ or Al+. 

The measurements of changes in the time delay over at least the 8 days around superior conjunction would be made as follows.  The laser beam from the clock on S1 would be expanded to about 20 cm diameter with a small Cassegrain telescope and then transmitted to S2.  The beam arriving at S2 would be received by a similar 20 cm telescope, and heterodyne detected against a prestabilized on-board laser with nearly the same wavelength.  The on-board laser would be phase-locked to the received beam with a small frequency offset, and then retransmitted back to S1.  There the relative phase of the received signal would be measured and recorded as a function of time.  The relative phase would be strongly affected by the relative motion of the two spacecraft in their orbits, and thus all of the relevant orbit parameters would have to be solved for, as well as the time delay parameter
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In the time delay measurements, care will be needed in reducing the effects of scattered light in the telescopes.  Because of the geometry, it would be difficult to avoid having some direct sunlight hit parts of the receiving optics.  But, with heterodyne detection, this does not appear to be a serious problem.  The plan for such a mission would be to not try to make measurements closer than about 0.4 solar radii to the limb, in order to avoid problems with reacquisition of the signals after solar conjunction.

Drag-free system:  The required performance builds on that planned for the LISA gravitational wave mission.  The LISA requirement on the vibration power spectral density amplitude is less than about 
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 at frequencies of 
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 Hz, but the performance is expected to degrade at lower frequencies.  The main challenge is minimizing thermal changes, and particularly thermal gradient changes, near the freely floating test mass that is the heart of the drag-free system. On LISA this is done almost completely by passive thermal isolation.  For a time delay mission, a fairly slow active temperature control system would be used at frequencies below 
[image: image53.wmf]4

10

-

 Hz.  Fortunately, the changes in solar heat input over the 8 days around superior solar conjunction would be quite small, even for the elliptical orbit of S2, because it would be near aphelion at that time.  The required drag-free performance is roughly 
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down to 
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In fact, much of the desired freedom from spurious accelerations needed for LISA has been demonstrated in the laboratory with torsion pendulum measurements.  But, more important, the overall performance of the drag-free system will be demonstrated in the LISA Pathfinder Mission, which is scheduled for launch by ESA in 2011.  The requirements are just to demonstrate an acceleration spectral density amplitude of 
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 performance down to 
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 Hz, because of the less ideal thermal stability expected for LISA Pathfinder, compared with LISA.  However, extensive tests of the response to various intentional thermal, electrical, magnetic, etc. disturbances will be carried out, in order to verify the models being used for the disturbances on the test masses.  Thus the design of the drag-free systems for a gravitational time delay mission does not appear to be a substantial limitation. Both the distant spacecraft S2 and the S1 spacecraft would be designed to have very low levels of non-gravitational orbit disturbances.   
Other scientific benefits from proposed mission:
Additional effects such as those arising from non-linear terms in the 00-component of the metric tensor, parameterized by
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, as well as other time delay effects originating in the sun’s rotation, can also be measured.

Conclusion:  Adoption of a major science goal of improving high-accuracy tests of the predictions of gravitational theory is recommended.  If this goal is adopted by ASTRO2010, a promising type of test is a roughly two orders of magnitude improvement in gravitational time delay measurements.  A reference mission that could accomplish this has been described, in order to permit review of the feasibility of such a mission.
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