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ABSTRACT

The current Galactic census is rooted fundamentally in detection of luminous

objects. As a result, the frequency of isolated dark objects, such as black holes,

neutron stars, and old brown dwarfs is almost completely unconstrained. These

dark objects trace star formation at a very early epoch. Microlensing is the only

viable path toward a mass-based census. Unfortunately, routine microlensing de-

tections yield only the Einstein timescale, which is a degenerate combination of

the mass, distance, and speed of the lens. An interferometer in solar orbit could

routinely yield two additional microlensing parameters, the Einstein radii pro-

jected on the sky and on the observer plane. Such an interferometer is therefore

the only viable path to a mass-based Galactic census.

1. Goal: Unbiased Survey Based on Mass, Not Light

What would an unbiased census of Galactic objects, dark and luminous, reveal? At

a minimum, it would yield the frequency of black holes (BHs), neutron stars (NSs), white

dwarfs (WDs), and old brown dwarfs (BDs), which are either completely dark or so dim

that they defy detection by normal methods. BHs and NSs are essentially the only discrete

local tracers of high-mass star formation at early epochs, just as the much more luminous

WDs already trace intermediate-mass star formation. At present the only evidence we have

on BDs in old populations [from microlensing (Gaudi et al. 2008; Gould et al. 2009) and

other sources (Burgasser et al. 2003)] suggests that they are unexpectedly common. Such a

survey might also find a significant component of the dark matter, although the majority of

dark matter cannot be in the form of compact objects (Alcock et al. 2000; Tisserand et al.

2007). The only known way to conduct such a census is to put a high-precision astrometry

telescope in solar orbit.

1Discolsure: This white paper arises from a collaboration of 12 people that has existed for 10 years
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2. Microlensing: The Only Viable Approach

Masses of astronomical bodies can be measured only by the deflections they induce

on other objects, typically planets and moons that orbit solar-system bodies, and binary

companions that orbit other stars. Masses of luminous isolated field stars can be estimated

from their photometric and spectroscopic properties by calibrating these against similar

objects in bound systems. Hence, photometric surveys yield a reasonably good mass census

of luminous objects in the Galaxy.

Dark objects like BHs are another matter. Mass measurements of isolated field BHs can

be obtained only by their deflection of light from more distant luminous objects. Indeed, it

is difficult to even detect isolated BHs by any other effect. However, to go from detection to

mass measurement (and therefore positive identification) of a BH is quite challenging.

Gravitational microlensing experiments currently detect about 800 microlensing “events”

per year. While this number will increase dramatically with next generation microlensing

experiments and LSST, the number of bright (V . 17) events required for high-precision

measurements, will not change significantly (Han 2008). Hence the feasibility of mass mea-

surements does not depend on survey improvements. The vast majority of the “lenses” are

ordinary stars, whose gravity deflects (and so magnifies) the light of a more distant “source

star”. As the source gets closer to and farther from the projected position of the lens, its

magnification A waxes and wanes according to the Einstein (1936) formula

A(u) =
u2 + 2

u
√

u2 + 4
, u(t) =

√

u2
0 +

(t − t0
tE

)2

, (1)

where u is the source-lens angular separation (normalized to the so-called Einstein radius θE),

t0 is the time of maximum magnification (when the separation is u0) and tE is the Einstein

radius crossing time, i.e., tE = θE/µ, where µ is the lens-source relative proper motion. The

mass M cannot be directly inferred from most events because the only measurable parameter

that it enters is tE, and this is a degenerate combination of M , µ and the source-lens relative

parallax πrel:

tE =
θE

µ
, θE =

√

κMπrel, [κ ≡ 4G/(c2AU) ∼ 8 masM−1
⊙

]. (2)

It follows immediately that to determine M , one must measure 3 parameters, of which

only one (tE) is routinely derived from microlensing events. Another such parameter is θE,

which could be routinely measured from the image positions, if it were possible to resolve

their O(mas) separation. A third is the “microlens parallax” πE,

πE =
πrel

θE

. (3)
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Combining equations (2) and (3)

M =
θE

κπE

, (4)

implying that the mass can be extracted from θE and πE alone. See e.g., Gould (2000).

Just as θE is the Einstein radius projected onto the plane of the sky, πE is related to

r̃E ≡ AU/πE, the Einstein radius projected onto the observer plane. And just as θE could in

principle be measured by resolving the two images on the sky, πE could be routinely measured

by simultaneously observing the event from two locations separated by O(r̃E) (Refsdal 1966;

Gould 1995). “Routine” measurement of both πE and θE is essential. As of today, there

have been a few dozen measurements of these parameters separately (e.g., Poindexter 2005),

but only one very exceptional microlensing event for which both were measured together

with sufficient precision to obtain an accurate mass of a dark object (an old BD of mass

M = 0.05 M⊙). This single detection hints that such objects may be substantially more

common than currently believed (Gould et al. 2009).

3. Secure Inference Requires Interferometer in Solar Orbit

In fact, such routine measurement is possible by placing an accurate astrometric and

photometric telescope in solar orbit. For current microlensing experiments carried out against

the dense star fields of the Galactic bulge, πrel ∼ 20 µas, so for stellar masses, θE ∼ 300 µas

and r̃E ∼ 15 AU. Hence, a satellite in solar orbit would be an appreciable fraction of an

Einstein radius from the Earth, so the photometric event described by equation (1) would

look substantially different than it would from the ground. From this difference, one could

infer r̃E (and so πE).

Determining θE is more difficult. As mentioned above, this would be straightforward

if one could resolve the separate images, but to carry this out routinely (i.e., for small as

well as large values of θE) would require larger baselines than are likely to be available in

next-generation instruments. Rather, one must appeal to a more subtle effect, the deflection

of the centroid of the two lensed images. This deflection is given by (Miyamoto & Yoshii

1995; Hog et al. 1995; Walker 1995)

∆θ =
u

u2 + 2
θE, (5)

where u is the source-lens separation in units of θE. Simple differentiation shows that this

achieves a maximum at u =
√

2, for which ∆θ = θE/
√

8, roughly 1/3 of an Einstein radius.

Hence, if the interferometer can achieve an accuracy of O(10 µas) at the time when this

deflection is the greatest, then θE can be measured to a few percent.
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Fig. 1.— How an interferometer in Solar orbit measures masses. (a) Light from source (S) is

deflected by lens (L) by angle α toward perfectly aligned hypothetical observer in a ring of

Einstein radius θ
e
, with phyiscal radius r

e
(not labeled). r̃

e
is projection of r

e
onto the plane

of the observer. (b) The source position in the Einstein ring as a function of time (labeled

in days) as seen from the Earth and satellite. The vector separation ∆u = (∆t/t
e
, ∆u0)

remains a constant during the event, where t
e

is the measured Einstein timescale and ∆u0 is

the difference in impact parameters as seen from the Earth and satellite. (c) The resulting

light curves as seen from the Earth and satellite allow one to measure the times of maximum

t0 and the peak magnifications (and so the impact parameters u0), and hence ∆u0 and

∆t0 = ∆t and thus ∆u. From (a) it is clear that the magnitude of this vector, ∆u, is the

distance to the satellite dSIM as a fraction of r̃
e
. One therefore recovers r̃

e
= dSIM/∆u. The

centroid of light from the two images is deflected from the source position by θ
e
/(2 + u2),

typically ∼ 100 µas. If the satellite has ∼ 10 µas precision, it can measure this deflection,

and hence θ
e
. The lens mass is then M = c2/(4Gr̃

e
θ

e
).
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There are some subtleties as well as some challenges. Satellite measurements of r̃E

are subject to a four-fold discrete degeneracy, which can only be resolved by appealing to

higher-order effects (Gould 1995). It is not enough to measure the centroid location to

determine the astrometric deflection: one must also know the undeflected position to which

the measured position is to be compared, and this can only be found by extrapolating back

from late time astrometry. And the precision of the mass measurement depends directly on

the signal-to-noise ratio of the underlying photometric and astrometric measurements. This

is important because space-based astrometric telescopes are likely to be photon challenged

and so to require relatively bright (and hence rare) microlensing events to provide accurate

mass measurements.

Fortunately, the Space Interferometry Mission (SIM) can. Gould & Salim (1999) carried

out detailed simulations based on the characteristics of SIM and concluded that with about

1200 hours of spacecraft time, it would be possible to make 5% mass measurements for about

200 microlenses. Most of these lenses will be stars, but at least few percent are likely to be

BHs, and several times more are likely to be other dark or dim objects like NSs, old WDs,

and old BDs. Since such a census is completely new, it may also turn up unexpected objects.

4. How Much of this Goal Can Be Achieved by GAIA?

Since GAIA will most likely be launched within a few years, one should ask whether it

could carry out these measurements or whether it could somehow leverage its vastly larger

number of targets to compensate for its inferior astrometric precision. And, of course, one

should also ask how much of this program could be carried out from the ground.

Neither GAIA nor ground-based interferometers can address the integrated problem of

measuring the entire mass spectrum of compact objects from BDs to BHs. However, GAIA

could make some progress on the more limited (but very interesting) problem of measuring

the frequency of BHs.

With regard to the full mass spectrum, GAIA has two problems: First, it will be in an

L2 rather than a solar orbit, and it therefore cannot be used as one of two platforms (the

other being the Earth) from which to measure the microlens parallax. Of course, this applies

still more strongly to ground-based observations of any type.

Second, the astrometric precision required for reliable identification of “typical” lenses

is substantially higher than will be achieved by GAIA. From equation (2), one finds that

for M = 1 M⊙ and πrel = 20 µas (typical of bulge lenses), θE = 400 µas. The maximum

deflection of the centroid of light from the true source position is therefore ∆θmax ∼ 140 µas,
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so that a 3 σ detection requires a precision of σ ∼ 45 µas. Of course, GAIA is expected

to achieve this precision for many stars, but this is mission accuracy. What is required

here is to measure the θE/
√

8 “excursion” while it is actually happening, i.e., over roughly

four Einstein crossing times, 4tE (2 tE while approaching and 2 tE while receding). Hence,

typically 120 days. For these short intervals, GAIA precision will be degraded by a factor

∼
√

5 years

120 days
∼ 4. Since even the brightest sources (indeed the ones that SIM would observe)

will be V ∼ 17, the required precision is a factor of several beyond GAIA’s capability.

However, among the dark objects, BHs are probably the most interesting, and because

BHs are substantially more massive than typical stellar lenses, BH events are longer and

so are more susceptible to microlens parallax measurements from the ground (Bennett et

al. 2002; Mao et al. 2002; Agol et al. 2002; Poindexter 2005). This obviates (or partially

obviates, see below) the need for a satellite in solar orbit.

Moreover, since they are more massive than typical objects, BHs have larger Einstein

rings, which dramatically improves the prospects for measuring them using GAIA At the

same πrel = 20 µas a “typical” BH of mass M ∼ 6 M⊙ would have θE ∼ 1 mas and so

∆θmax ∼ 350 µas, so that a 3 σ detection would only require a precision of σ ∼ 120 µas. And,

the larger θE implies a longer tE, typically 75 days, which reduces the degradation factor on

GAIA astrometry from a factor 4 to a factor 2.5. That is, a “typical” BH would only require

a “mission precision” of σ ∼ 120 µas/2.5 = 50 µas. If GAIA meets its design goals, this will

be achievable for the brighter sources.

An important collateral point is that such GAIA measurements would break a common

(and usually crippling) degeneracy in the ground-based microlens parallax measurements.

Unlike trig parallax, microlens parallax is a vector, πE, whose direction is that of the lens-

source relative proper motion and whose amplitude is, of course, πE. For typical events, πE is

not measurable at all (from a single observatory) because these events are too short. For very

long events, it is completely measurable (e.g., Poindexter 2005), but for intermediate-length

events, such as those expected for typical BHs, one component of πE (the one parallel to the

projected position of the Sun-Earth axis) can be tightly constrained, while the orthogonal

component is almost completely unconstrained (Gould et al. 1994). See, e.g., Jiang et

al. (2003); Ghosh et al. (2003). By measuring the direction of the centroid displacement

(which can be determined with roughly the same fractional precision as the amplitude of

displacement) one can determine the direction of πE and so break the degeneracy.

Advances with ground-based interferometers are substantially more difficult than with

GAIA, partly because they are restricted to brighter sources (which are extremely rare) and

partly because of poorer precision.
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In brief, neither GAIA nor ground-based interferometers have any hope of a complete

census of compact objects (stars, BHs, NSs, WDs, and BDs). However, GAIA probably will

make inroads toward a BH census (provided it reaches design specs), while ground-based

interferometry may take a few initial steps toward this goal. Therefore, SIM provides the

only viable approach on the current horizon to obtain an unbiased Galactic census.
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