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Executive summary. We discuss the central role played by the X-ray study of hot baryons 
within galaxy clusters to reconstruct the assembly of cosmic structures and to trace the past 
history of star formation and accretion onto supermassive Black Holes (BHs). We shortly review 
the progress in this field contributed by the current generation of X-ray telescopes. Then, we 
focus on the outstanding scientific questions that have been opened by observations carried out 
in the last years and that represent the legacy of Chandra and XMM: (a) When and how is 
entropy injected into the inter-galactic medium (IGM)? (b) What is the history of metal 
enrichment of the IGM? (c) What physical mechanisms determine the presence of cool cores in 
galaxy clusters? (d) How is the appearance of proto-clusters at z~2 related to the peak of star 
formation activity and BH accretion? We show that the most efficient observational strategy to 
address these questions is to carry out a large-area X-ray survey, reaching a sensitivity 
comparable to that of deep Chandra and XMM pointings, but extending over several thousands 
of square degrees. A similar survey can only be carried out with a Wide-Field X-ray Telescope 
(WFXT), which combines a high survey speed with a sharp PSF across the entire FoV. We 
emphasize the important synergies that WFXT will have with a number of future ground-based 
and space telescopes, covering from the radio to the X-ray bands. Finally, we discuss the 
immense legacy value that such a mission will have for extragalactic astronomy at large. 
 

1. Galaxy clusters: the legacy of Chandra and XMM 
Galaxy clusters represent the place where astrophysics and cosmology meet: while their overall 

internal dynamics is dominated by gravity, the astrophysical processes taking place on galactic 

scale leave observable imprints on the diffuse hot gas trapped within their potential wells
[1]

. 

Understanding in detail the relative role played by different astrophysical phenomena in 

determining this cosmic cycle of baryons, and its relationship with the process of galaxy 

formation, is one of the most important challenges of modern cosmology. 

Clusters of galaxies represent the end result of the collapse of density fluctuations over 

comoving scales of about 10 Mpc. For this reason, they mark the transition between two distinct 

dynamical regimes. On scales roughly above 10 Mpc, the evolution of the structure of the 

universe is mainly driven by gravity and the evolution still feels the imprint of the cosmological 

initial conditions. At scales below 1 Mpc the physics of baryons plays an important role in 

addition to gravity, thus making physical modeling far more complex. In the current paradigm of 

structure formation, clusters form via a hierarchical sequence of gravitational mergers and 

accretion of smaller systems. Within these small halos gas efficiently cools, forms stars and 

accretes onto supermassive black holes (SMBHs), living in massive galaxies, already at high 

redshift. While the star formation peaks at z~2-3, the intergalactic gas is heated to high, X-ray 

emitting temperatures by adiabatic compression and shocks, and settles in hydrostatic 

equilibrium within the cluster potential well, only at relatively low redshift, z<2. The process of 

cooling and formation of stars and SMBHs can then result in energetic feedback due to 

supernovae or AGN, which inject substantial amounts of heat into the intergalactic medium 

(IGM) and spread heavy elements throughout the forming clusters.  

Thanks to the high density and temperature reached by the gas within them, galaxy clusters mark 

the only regions where thermo- and chemo-dynamical properties of the IGM can be studied in 

detail at z<1 from X-ray emission, and directly connected to the optical/near-IR properties of the 

galaxy population. A remarkable leap forward in the quality of X-ray observations of clusters 

took place with the advent of the Chandra and XMM-Newton satellites. Thanks to their 

unprecedented sensitivity (and angular resolution in case of Chandra), they led to a number of 

fundamental discoveries concerning nearby, z<0.3, clusters. For instance: 



(a) The lack of strong emission lines at soft X-ray energies in the core regions placed strong 

limits on the amount of gas that can cool to low temperatures
[2]

, thus challenging the classical 

“cooling flow” model
[3]

; 

(b) Temperature profiles have been unambiguously observed to decline outside the core regions 

and out to the largest radii sampled so far (~R500
1
), while they gently decline toward the cluster 

center in relaxed systems
[4] 

; 

(c) The level of gas entropy at R500 is in excess of what explainable by the action of supersonic 

accretion shocks
[5]

, while it is unexpectedly low in the innermost regions of relaxed clusters
[6]

; 

(d) The intra-cluster medium (ICM) is not uniformly enriched in metals, instead metallicity 

profiles are observed to have a spike in the central regions, associated to the presence of the 

brightest cluster galaxy (BCG), while declining at least out to 0.3R500 
[7]

.  
While these observations shed new light on our understanding of the physical properties of the 
low-redshift intergalactic medium, (IGM), they opened at the same time at least as many 
questions. 

  
2. Key open questions 
Q1. When and how is entropy injected into the 
IGM? The standard explanation for the excess of 
entropy observed out to R500 is that some 
energetic phenomena should have heated the 
ICM over the cluster life-time

[1]
. Models based 

on the so-called pre-heating (i.e. diffuse entropy 
injection before the bulk of the mass is accreted 
into the cluster halos) have been proposed as an 
explanation

[8]
. However, these models predict 

quite large isentropic cores, which are not 
observed. Furthermore, observations of the inter-
galactic medium (IGM), from observations of 
z~2 absorption systems in high-resolution optical 
spectra of distant QSOs, demonstrate that any 
pre-heating should take place only in high-
density regions

[9]
. An alternative scenario is that 

ICM heating takes place at relatively low 
redshift, within an already assembled deep 
potential well. In this case, the natural 
expectation is that the same heating agent, 
presumably the central AGN, should be 
responsible for both establishing the cool core 

and increasing the entropy out to ~ 1 Mpc scale, although it is not clear how AGN feedback can 
be distributed within such a large portion of the cluster volume.  
Reconstructing the timing and pattern of entropy injection in the ICM has far reaching 
implications in tracing the past history of star formation and black hole (BH) accretion. While 
we expect that the two above scenarios leave distinct signatures on the evolution of the ICM 
entropy structure, available data from XMM and Chandra are too sparse to adequately 
understand this evolution. 

                                                
1 We indicate with R!c the cluster-centric radius encompassing an average overdensity !c times the critical cosmic 

density. For reference, !c =200 is close to the virial overdensity while !c =500 corresponds to ~half the virial radius 

for a concordance "CDM model.  

 
Figure 1. The cluster discovery space for a high-

sensitivity, 5-year long Wide Field X-ray Telescope 

survey, compared with the planned eROSITA 

mission (2013). Bars indicate the estimated number 

of clusters detected at z>0.5 and z>1 (blue and green 

respectively, assuming that at least 50 source counts 

are needed), number of clusters at z>1 for which an 

accurate measurement of the temperature can be 

obtained (>1500 counts required; orange) and those 

at z>0.5 for which temperature profiles and 

metallicity can be recovered (>15,000 counts 

required; red). Note that a logarithmic scale is used. 



Q2. What is the history of metal enrichment of the IGM? This question is inextricably linked 
to the previous one on the history of IGM heating. Measurements of the metal content of the 
ICM provide direct information on the past history of star formation and processes (e.g., galactic 
ejecta powered by SN and AGN, ram-pressure stripping of merging galaxies, stochastic gas 
motions, etc.) that are expected to displace metal-enriched gas from star forming regions

[10]
. So 

far, X-ray observations have provided valuable information on the pattern of enrichment only at 
low-redshift (z<0.3)

[11]
. Profiles of the Fe abundance have been measured for nearby systems

[12]
. 

However, these results are limited to rather small radii, <0.3R500, while the level of enrichment at 
larger radii should be quite sensitive to the timing of metal production and to the mechanism of 
metal transport. Furthermore, profiles of chemical abundances for other elements, such as O, Si, 
and Mg, are much more uncertain

[12]
. Tracing the relative abundances of different chemical 

species, which are synthetized in different proportions by different stellar populations, is crucial 
to infer the relative role played by different SN types and to establish the time-scale over which 
the ICM enrichment took place. The situation is even more uncertain at z>0.3. Although analyses 
based (mainly) on the Chandra archive show indications for an increase of the ICM enrichment 
since z~1

[13]
, basically no information is available on the metallicity profiles and on abundance 

of elements other than Fe. To improve upon this situation, one needs (a) to push to larger radii 
the study of the distribution in the ICM of different chemical species in nearby clusters and (b) to 
measure profiles of the Fe abundance for hundreds of clusters at z>0.5.  
Q3. What physical mechanisms determine the presence of cool cores in galaxy clusters? 
XMM and Chandra unambiguously demonstrated that the rate of gas cooling in cluster cores is 
unexpectedly low. This result removed the previously claimed inconsistency between high mass-
deposition rate inferred from X-ray imaging of cluster cores and the low level of star formation 
observed in central cluster galaxies. However, such a low cooling rate requires that some sort of 
energy feedback must heat the ICM so as to exactly balance radiative losses. AGN are generally 
considered as the natural solution to this problem

[14]
. However, no consensus has been reached 

so far on the relative role played by AGN and by mergers in determining the occurrence of cool 
cores in galaxy clusters. Since merging activity and galactic nuclear activity are both expected to 
evolve with redshift, measurements of the occurrence of cool cores in distant clusters are 
necessary to address this issue. Although attempts have been pursued to characterize the 
evolution of the fraction of cool cores using Chandra data

[15]
, no definite conclusion has been 

reached on the evolution of the fraction of cool core clusters.  
Q4. How is the appearance of proto-clusters related to the peak of star formation activity 
and BH accretion? Massive galaxies in today’s clusters show only very modest ongoing star 
formation: they harbor a super-massive black hole usually living in a quiescent accretion mode 
and experience only “dry” mergers with much smaller galaxies. The situation should be radically 
different at z~2. This is the epoch when proto-BCGs are expected to be assembling through 
violent mergers between actively star-bursting galaxies, moving within a rapidly evolving 
potential well. These proto-cluster regions accrete a large amount of gas that is suddenly heated 
to high temperature by mechanical shocks and, for the first time, starts radiating in X-rays. At the 
same time, BHs hosted within merging galaxies are expected to coalesce and their accretion 
disks to be destabilized by the intense dynamical activity, thereby triggering a powerful release 
of feedback energy. Evidence for such forming proto-clusters has been obtained by optical 
observations of a strong galaxy overdensity region, the so-called Spiderweb complex, 
surrounding a previously identified powerful radio galaxy at z~2

[16]
. Cosmological simulations 

lend support to the expectation that similar structures trace the progenitors of massive cluster 
seen locally, and predict that this structure should already contain dense IGM, emitting in X-rays 
with LX~10

44 
cgs in the [0.5-2] keV band, with a temperature of several keV and enriched in 

metal at a level comparable to nearby clusters
[17]

. As of today, no unambiguous detection of X-



ray emitting gas permeating this region has been obtained
[18]

. While the detection of such a hot 
diffuse gas may be just at the limit of the capability of current X-ray telescopes, characterizing 
its physical properties (temperature and metallicity) is far beyond the reach of Chandra and 
XMM. Expectations based on the standard LCDM model with WMAP-5y cosmological 
parameters suggest that several hundreds of these systems should be present at z>2 over the 
whole sky.   
 
 3. The need for a sensitive X-ray survey of galaxy clusters 
 The best observational strategy to address the above questions is to carry out high-sensitivity 
surveys in the soft X-ray band (i.e. [0.5-4] keV) over a large area of the sky. The three most 
important characteristics that an X-ray survey telescope must have for this purpose are the 
following: 
i) A large field-of-view (FOV) combined with a large collecting area (A), i.e. with 
unprecedented grasp (FOV x A), which measures the survey speed.  
ii) High angular resolution across the entire FoV, to distinguish low surface brightness extended 
sources, to miminize point-source contamination and to carry out high-quality imaging and 
spectroscopy in the central regions of distant (out to z~1) clusters.  
iii) Suitable choice of the orbit of the satellite (e.g. low equatorial) to minimize the particle 
background, so as to take full advantage of the instrument sensitivity and of the high-quality 
Point Spread Function (PSF). 
The design of an X-ray telescope with such characteristics is beyond the scope of this White 
Paper. However, for our purpose, here it is enough to state that the requirements of FOV=1 
sq.deg., A=0.5-1 m

2
 at 1-2 keV and a PSF of about 5” (half power diameter), approximately 

constant over the entire FOV, can be met by the polynomial profiles for X-ray mirrors
[19]

 with a 
realistic technological development over a time-scale of about 5 years. Such a mission, Wide 
Field X-ray Telescope (WFXT), has been proposed and described by Murray et al.

[22]
 Carrying 

out large area surveys with a Wide Field X-ray Telescope (WFXT), having such a large grasp 
and high resolution, represents the most effective observational strategy to address the 
aforementioned questions.  
 In Figure 1, we show a comparison for the yields of clusters expected from five years of 
operation of WFXT, compared with the expectations for the planned German-led mission 
eROSITA

2
. Besides the huge number of clusters that the WFXT will detect at large redshift, this 

demonstrates that measurements of the physical properties of the ICM will be available for a 
large number of them.  
In Figure 2 we show a simulation of a 1 sq.deg. of  X-ray sky as observed by a WFXT in only 13 
ksec. This image elucidates the power of combining large collecting area and sharp PSF for the 
characterization of a large number of galaxy clusters. As an example, in the top left cut-out we 
show how a moderately luminous cluster at z=1.6 is detected as an extended source with ~300 
counts. Such distant clusters will be routinely detected in each WFXT field-of-view. 
Also shown in the central left panel is the relation between true redshift and redshift recovered 
from the detection of the Fe line in the X-ray spectra of the brightest clusters in this field. This 
will open the way to an unprecedented, entirely X-ray selected,  
cluster redshift survey, which will include tens of thousands systems at 0.5<z<~1.5, thereby 
avoiding extremely time consuming optical spectroscopy. 
Answer to Q1. A large number of clusters with ~10

4
 counts will increase by orders of magnitude 

the statistics of a handful of clusters at z>0.5 for which detailed entropy profiles have been  
measured. For these distant clusters the ICM properties will be measured with a quality 

                                                
2
 Based on the eROSITA Mission Definition Document available at http://www.mpe.mpg.de/erosita/MDD-6.pdf 



comparable to what Chandra and XMM provided so far at z<0.2 for a smaller number of objects. 
The measurement of ICM profiles out to z~1 and beyond will allow us to trace the interplay 
between IGM and galaxy population along 2/3 of the cosmological past light-cone. Furthermore, 
the low background and the possibility of resolving out the contribution of point sources will  
also allow us to measure such profiles out to R200 and beyond for bright galaxy clusters at z<0.2. 
Answer to Q2. Iron metallicity profiles will be measured for virtually all the clusters for which a 
temperature profile is obtained, although with ~2 times larger statistical errors. A very accurate 
measurement of the global Fe metallicity will be obtained for tens of thousands of clusters out to 
z~1.5. For all the clusters of this sample, thermo-dynamical and chemical properties of the ICM 
will be characterized with unprecedented precision.  
Answer to Q3. The high-quality PSF will allow one to resolve the core region of distant clusters 
(a cool-core of 50 kpc radius will subtend an angle of ~6” at z=1). The yield of hundreds of 
clusters at z>0.5 for which more than 10

4
 counts will be available, will allow us to accurately 

measure the evolution of the occurrence of cool cores and how this is related to the cluster 
dynamical state. 
Answer to Q4. The study of proto-clusters at z~2 is still unexplored territory. For this reason, it 
is difficult to make predictions on how many of these structures will be observed. By 
extrapolating our present knowledge of the relation between mass and  X-ray luminosity, we 
expect to detect several hundreds of such objects over the whole sky. For the brightest of these 
clusters, it will even be possible to measure their redshift through X-ray spectroscopy with 
deeper follow-up exposures. At z~2 the inverse Compton scattering of relativistic electrons, 
injected by AGN in core regions, off the CMB photons is much more effective than at low-z in 
producing a hard X-ray excess, thanks to the higher CMB temperature. At high redshift the K-
correction also increases the inverse Compton emission relative to thermal bremsstrahlung at 
softer observed photon energies. The bottom left panel of Fig. 2 shows a deep 400 ksec WFXT 
pointing on a proto-cluster, formed in a cosmological hydrodynamic simulation

[17]
. The large 

number (~15,000) of photons detected for this object will allow one: (a) to catch “in fieri” the 
pristine ICM enrichment; (b) to see in action the combined effect of strong mergers and intense 
nuclear activity within a forming cluster; (c) to discern the thermal and non-thermal emission 
from X-ray spectroscopy and infer the early contribution of cosmic rays in pressurizing the ICM.  
The comparison with expectations for eROSITA (Fig. 1) demonstrates that the goal of measuring 
physical properties of the ICM out to z~1 and beyond can only be accomplished by a survey with 
the area and sensitivity achievable with WFXT. In fact, WFXT constitutes a two orders of 
magnitude improvement with respect to eROSITA (similar to the area-sensitivity enhancement 
that eROSITA will give with respect to the ROSAT All-Sky Survey), with in addition a 6 times 
better angular resolution. In summary, WFXT will not be just a highly efficient cluster-counting 
machine, aimed at detecting ~10

6
 objects out to their formation redshift. Its unique added value 

is that it will characterize the physical properties for a good fraction of these clusters and, 
therefore, calibrate them as robust tools for cosmological applications. Besides the astrophysical 
study of the cosmic cycle of baryons, on which this White Paper is focused, an obvious 
application will be the reconstruction of the growth rate of cosmic structures and, from this, the 
determination of  the underlying cosmological model, without the need of carrying out any 
follow-up observations with other large-area X-ray telescopes (aspect discussed in a White Paper  
by A. Vikhlinin et al.).  
 
4. Synergies with other non X-ray surveys & legacy value 
Addressing the outstanding questions outlined above will greatly benefit from a coordinated 
multi-wavelength activity between WFXT, future space missions and ground-based facilities.  
 Synergies with ground-based optical surveys. The identification and characterization of the 



galaxy populations hosted by the half million X-ray luminous clusters at z>0.5, unveiled by  
WFXT, will be an essential process to obtain a comprehensive and self-consistent picture of the 
cosmic cycle of baryons in their hot and cold phase, by tracing the evolution of their underlying 
stellar populations and star formation histories. Fortunately, deep optical coverage of the large 
survey areas will be provided by the next generation of wide-field ground-based facilities, 
currently under development and scheduled for routine operations within the next few years. 
Specifically LSST and Pan-Starrs will have the necessary depth and multi-band (0.4-1µ) imaging  
to enable immediate identification of a large number of clusters, also providing accurate  
photometric redshifts.  
 Synergies with JDEM. The combination of WFXT with NASA and ESA dark energy (DE) 
missions currently under development (JDEM and Euclid) will allow unprecedented studies of 
clusters at z>1, as well as proto-clusters at z~2, by providing their spectroscopic confirmation 

 
Figure 2. Simulation of a WFXT image (FoV=1 deg

2
) with 13 ksec exposure .  Red, green and blue colors 

denote X-rays of increasing energy, from 0.5 to 7 keV. The field has been populated with clusters 

obtained by "cloning" at high z a set of clusters observed with Chandra at low z, so as to reproduce the 

evolution of the X-ray luminosity function predicted in a WMAP-5y cosmology. The AGN population has 

been modelled according to the predictions of a population synthesis model for the X-ray background. The 

flux limit for cluster detection is ~10
-15 

cgs in the [0.5-2] keV band. The field includes 69 clusters above 

this flux limit, with 19 lying at z>1. Top left: a 3 arcmin cut-out of a cluster at z=1.6, with LX=8#10
43

 cgs 

in the [0.5-2] keV band. Central left: the relationship between true redshift and redshift recovered from the 

X-ray spectrum (using the Iron K$ line) for the 17 brightest clusters within this field (with at least 500 

counts). Bottom left: 10 arcmin cut-out of a proto-cluster at z=2.1, extracted from a cosmological 

hydrodynamic simulation, as observed with an exposure of 400 ksec. This is the progenitor of today’s 

massive cluster, predicted to have LX=4#10
44

 cgs and detected with ~15,000 counts.  



(very challenging and time consuming from the ground) and a full characterization of member 
galaxies with high resolution rest frame optical imaging (0.5-1.7µ). DE missions are also 
designed to reconstruct the DM mass distribution via weak lensing tomographic techniques. This 
will allow direct lensing mass determination of thousands of massive clusters out to z%1. Their 
comparison with X-ray derived masses will yield the much heralded cluster mass calibration and 
control of systematics for high-precision cosmological applications. 
 Synergies with Sunyaev-Zeldovich surveys. The Atacama Cosmology Telescope (ACT) and 
the South Pole Telescope (SPT) have recently opened a new era of Sunyaev-Zeldovich (SZ) 
cluster search

[20]
. Next generation large single-dish mm telescopes, such as the Caltech-Cornell 

Atacama Telescope (CCAT) will have enough sensitivity and angular resolution to carry out 
large-area SZ surveys, providing at the same time spatially resolved SZ imaging for moderately 
distant massive clusters. Taking advantage of the different dependence of the SZ and X-ray 
signals on gas density and temperature, their combination will provide a reconstruction of 
temperature and mass profiles, independent of X-ray spectroscopy

[21]
. This will offer further 

independent means of calibrating mass measurements of clusters.  
Legacy value. With its unprecedented grasp and angular resolution, WFXT will be an 
outstanding source of interesting targets for follow-up studies with facilities such as JWST, 
ALMA, the next generation of giant (30-40m) ground-based telescopes, and X-ray observatories 
(i.e., IXO and Gen-X). For example, a combined study of X-ray luminous proto-cluster regions 
with ALMA, will test whether a phase of vigorous star formation (sub-mm bright galaxies) 
coexist with a BH accretion phase. WFXT will also provide targets for future X-ray missions 
with large collecting area. Indeed, follow-up pointed observations with IXO will allow the study 
of metallicity and entropy structure of the ICM in the most distant systems at z~2. 
In general, the synergy with next generation multi-wavelength deep wide-area surveys and with 
high sensitivity instruments for pointed observations will unleash the full potential of WFXT in 
addressing a number of outstanding scientific questions for the next decade and will consolidate 
its immense legacy value. 
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